
Introduction to the WIL Language

Outline of Commands and Procedures
WIL Language Guide

List of Commands

Abs AskLine A skPassword AskYesNo
Average Beep Call CallExt
Char2Num ClipAppend ClipGet ClipPut
CurrentFile DateTime DDEE xecute DDEInitiate
DDEPoke DDERequest DDETerminate DDETimeout
Debug Delay DialogBox DirChange
DirGet DirHome DirItemize DirMake
DirRemove DirRename DirWindows DiskFree
DiskHide DiskReset DiskScan DiskUpdate
Display DOSVersion Drop EndSession
Environment ErrorMode Ex clusive Execute
Exit FileAppend F ileAttrGet FileAttrSet
FileClose FileCopy FileDelete FileExist
FileExtension FileHilite FileItemize FileLocate
FileMove FileOpen FilePath FileRead
FileRename FileRoot FileSize FileTimeGet
FileTimeTouch FileWrite G oto IconArrange
If...Then IgnoreInput I niDelete IniDeletePvt
IniItemize IniItemizePvt IniRead IniReadPvt
IniWrite IniWritePvt IntControl IsDefined
IsKeyDown IsLicensed IsMenuChecked IsMenuEnabled
IsNumber IsRunning ItemCount ItemExtract
ItemSelect LastError L ogDisk Max
Message Min M ouseInfo NetAddCon
NetBrowse NetCancelCon N etDialog NetGetCaps
NetGetCon NetGetUser Num2Char OtherDir
OtherUpdate ParseData P ause PlayMedia
PlayMidi PlayWaveForm R andom Return
RunHide RunIcon Run RunZoom
SendKey SetDisplay S KDebug SnapShot
Sounds StrCat StrCmp StrFill
StrFix StriCmp StrIndex StrLen
StrLower StrReplace StrScan StrSub
StrTrim StrUpper T erminate TextBox

TextSelect Version W aitForKey WallPaper
WinActivate WinArrange WinCloseNot WinClose
WinConfig WinExeName WinExist WinGetActive
WinHide WinIconize WinItemize WinMetrics
WinName WinParmGet WinParmSet WinPlaceGet
WinPlaceSet WinPlace WinPosition WinResources
WinShow WinState WinTitle WinVersion
WinWaitClose WinZoom Y ield

Introduction to the WIL Language
List of Commands
WIL Language Guide

Outline of Commands and Procedures--Main Topic Index
Clipboard and Data Exchange
Dialogs, Messages, Data Entry
Directory Maintenance
File Maintenance
INI File Maintenance
Language Specifics, Error Codes
Launching Applications
Multimedia Controls
Network Administration
PC System Information
Windows Session Control
WIL Programming Language

 Clipboard and Data Exchange
ClipAppend
ClipGet
ClipPut
DDEExecute
DDEInitiate
DDEPoke
DDERequest
DDETerminate
DDETimeout
IsKeyDown
SendKey
SnapShot
WaitForKey

 Dialogs, Messages,Data Entry
AskLine
AskYesNo
Beep
DialogBox
Display
Execute
ItemCount
ItemExtract
ItemSelect
Message
Pause
Terminate
TextBox

 Directory Maintenance
DirChange
DirGet
DirHome
DirItemize
DirMake
DirRemove
DirRename
DirWindows

 File Maintenance
CurrentFile
FileAppend
FileAttrGet
FileAttrSet
FileClose
FileCopy
FileDelete
FileExist
FileExtension
FileHilite
FileItemize
FileLocate
FileMove
FileOpen
FilePath
FileRead
FileRename
FileRoot
FileSize
FileTimeGet
FileTimeTouch
FileWrite

 INI File Maintenance
IniDelete
IniDeletePvt
IniItemize
IniItemizePvt
IniRead
IniReadPvt
IniWrite
IniWritePvt

 Language Specifics, Error Codes

Arithmetic Operators
Abs
Average
Max
Min
Random

Command Post Specific Commands
IsRunning
OtherDir
OtherUpdate
IsLicensed
IsMenuChecked
IsMenuEnabled
IsRunning
MenuChange
#Nextfile

Error Commands
LastError
ErrorMode
Error Messages

Variables
Drop
IsDefined
IsNumber
Variables Explained

Flow Control–Decisions
Delay
Exit
Goto
If...Then

Sub Programs (Procedures)
Call
CallExt
Return

Debugging Procedures
Debug
SKDebug

String (Text) Manipulation
Char2Num
Num2Char

ParseData
StrCat
StrCmp
StrFill
StrFix
StriCmp
StrIndex
StrLen
StrLower
StrReplace
StrScan
StrSub
StrTrim
StrUpper
TextSelect

 Language Explained (WIL)
Check Box Dialog
Command Line Parameters
Comments
Constants
Dialog Box Samples
Directory List Dialog Sample (Full)
Error Messages
File List Dialog Sample (Plain)
Function Parameters
Identifiers
Keywords
Operators (Arithmetic, Logical)
Precedence and Evaluation Order
Predefined Constants
Programming Dialog Boxes (Explained)
Radio Button Dialogs
Statements
Using Substitution
Variables

 Launching Applications
Run
RunHide
RunIcon
RunZoom

 Multimedia Controls
PlayMedia
PlayMidi
PlayWaveForm
Sounds

 Network Administration
AskPassword
DiskFree
DiskHide
DiskReset
DiskScan
DiskUpdate
LogDisk
NetAddCon
NetBrowse
NetCancelCon
NetDialog
NetGetCaps
NetGetCon
NetGetUser

 PC System Information
DateTime
DOSVersion
Version
Environment
MouseInfo

 Windows Session Control
EndSession
Exclusive
IconArrange
IgnoreInput
IntControl
SetDisplay
WallPaper
WinActivate
WinArrange
WinClose
WinCloseNot
WinConfig
WinExeName
WinExist
WinGetActive
WinHide
WinIconize
WinItemize
WinMetrics
WinName
WinParmGet
WinParmSet
WinPlace
WinPlaceGet
WinPlaceSet
WinPosition
WinResources
WinShow
WinState
WinTitle
WinVersion
WinWaitClose
WinZoom
Yield

#Nextfile (Command Post only)

#Nextfile is a language directive used only by the Command Post program.

A "language directive" is a command to the CPML interpreter, as opposed to a menu
statement.    These begin with a pound-sign ("#") in column 1.
Currently there is only one directive recognized by Command Post:    #NextFile. This
directive tells the CPML interpreter to append another .CPM file to the current one before
building the menus.    You can append only one extra menu file in this way.

Abs

Returns the absolute value of a number.

Syntax:
Abs (integer)

Parameters:
integer =integer whose absolute value is desired.

Returns:
(integer) absolute value of integer.

This function returns the absolute (positive) value of the integer which is passed to it,
regardless of whether that integer is positive or negative.

    This example in plain text:

dy = Abs(y1 - y2)

Message("Years", "There are %dy% years 'twixt %y1% and %y2%")

See Also:
Average, Max, Min

;Abs

dy = Abs(y1 - y2)

Message("Years", "There are %dy% years 'twixt %y1% and %y2%")

AskLine

Prompts the user for one line of input.

Syntax:
AskLine (title, prompt, default)

Parameters:
"title" = title of the dialog box.

"prompt" = question to be put to the user.

"default" = default answer.

Returns:
(string) user response.

Use this function to query the user for a line of data.    The entire user response will be
returned if the user presses the OK button or the Enter key.    If the user presses Cancel, the
batch file processing is canceled.

    This example in plain text:

name = AskLine("Game", "Please enter your name", "")

game = AskLine("Game", "Favorite game?", "Solitaire")

message(StrCat(name,"'s favorite game is "), game)

produces:

And then, if Richard types "Scramble" and clicks on the OK button:

See Also:

AskYesNo, Display, ItemSelect, Message, Pause, TextBox

;AskLine

name = AskLine("Game", "Please enter your name", "")

game = AskLine("Game", "Favorite game?", "Solitaire")

message(StrCat(name,"'s favorite game is "), game)

AskPassword

Prompts the user for a password.

Syntax:
AskPassword (title, prompt)

Parameters:
(s) title title of the dialog box.

(s) prompt question to be put to the user.

Returns:
(s) user response.

Pops up a special dialog box to ask for passwords.    An asterisk (*) is echoed for each
character that the user types; the actual characters entered are not displayed.

    This example in plain text:

pw = AskPassword("Security check", "Please enter your password")

If StriCmp(pw, "winguy") != 0 Then Goto nogo

Run(Environment("COMSPEC"), "")

Exit

:nogo

Pause("Security breach", "Invalid password entered")

See Also:
AskLine, AskYesNo, DialogBox

AskPassword

pw = AskPassword("Security check", "Please enter your password")

If StriCmp(pw, "winguy") != 0 Then Goto nogo

Run(Environment("COMSPEC"), "")

Exit

:nogo

Pause("Security breach", "Invalid password entered")

AskYesNo

Prompts the user for a YES or NO answer.

Syntax:
AskYesNo (title, question)

Parameters
"title" = title of the question box.

"question" = question to be put to the user.

Returns:
(integer) @YES or @NO, depending on the button pressed.

This function displays a message box with three pushbuttons - Yes, No, and Cancel.    If the
user presses Cancel, the current batch file is ended, so there is no return value.

    This example in plain text:

q = AskYesNo('Testing', 'Please press "YES"')

If q == @YES Then Exit

Display(3, 'ERROR', 'I said press "YES"')

Produces:

And then, if the user presses No:

See Also:
AskLine, Display, ItemSelect, Message, Pause, TextBox

AskYesNo

q = AskYesNo('Testing', 'Please press "YES"')

If q == @YES Then Exit

Display(3, 'ERROR', 'I said press "YES"')

Average

Returns the average of a list of numbers.

Syntax:
Average (integer [, integer]...)

Parameters:
integer =integers to get the average of.

Returns:
(integer) average of the integers.

Use this function to compute the mean average of a series of numbers, delimited by
commas.    This function returns an integer value, so there can be some rounding error
involved.

    This example in plain text:

avg = Average(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

Message("The average is", avg)

See Also:
Abs, Max, Min

Average

avg = Average(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

Message("The average is", avg)

Beep

Beeps once.

Syntax:
Beep

Use this command to produce a short beep, generally to alert the user to an error situation.

    This example in plain text:

Beep

Pause("WARNING!!!", "You are about to destroy data!")

Beep

Beep

Pause("WARNING!!!", "You are about to destroy data!")

Call

Calls another WBT file as a subroutine.

Syntax:
Call (filename.wbt, parameters)

Parameters:
"filename.wbt" = the WBT file you are calling.    The WBT extension is required.

"parameters" = the parameters to pass to the file, if any, in the form "p1 p2 p3 ... pn".

Returns:
(integer) always @FALSE.

This function is used to pass control temporarily to a secondary WBT file.    The main WBT file
can optionally pass parameters to the secondary WBT file.    All variables are common
(global) between the calling and the called WBT files, so that the secondary WBT file may
modify or create variables.    The secondary WBT file should end with a Return statement, to
pass control back to the main WBT file.
If a string of parameters is passed to the secondary WBT file, it will automatically be parsed
into individual variables with the names param1, param2, etc., (maximum of nine
parameters).    The variable param0 will be a count of the total number of parameters in the
string.

    This example in plain text:

; MAIN.WBT

name = AskLine("", "What is your name?", "")

age = AskLine("", "How old are you?", "")

valid = @NO

Call("chek-age.wbt", age)

If valid == @NO Then Message("", "Invalid age")

; CHEK-AGE.WBT

userage = param1

really = AskYesNo("", "%name%, are you really %userage%?")

If really == @NO Then Return

If (userage > 0) && (userage < 150) Then valid = @YES

Return

See Also:
CallExt, ParseData, Return

Call

; MAIN.WBT

name = AskLine("", "What is your name?", "")

age = AskLine("", "How old are you?", "")

valid = @NO

Call("chek-age.wbt", age)

If valid == @NO Then Message("", "Invalid age")

; CHEK-AGE.WBT

userage = param1

really = AskYesNo("", "%name%, are you really %userage%?")

If really == @NO Then Return

If (userage > 0) && (userage < 150) Then valid = @YES

Return

CallExt

Calls another WBT file as a separate subprogram.

Syntax:
CallExt (filename.wbt, parameters)

Parameters:
"filename.wbt" = the WBT file you are calling.    The extension is required.

"parameters" = the parameters to pass to the file, if any, in the form "p1 p2 p3 ... pn".

Returns:
(integer) always @FALSE.

This function is used to pass control temporarily to a secondary WBT file.    The main WBT file
can optionally pass parameters to the secondary WBT file.    All variables are exclusive
(local) to their respective files, so that neither WBT file "knows about" variables being used
by the other.    The secondary WBT file should end with a Return statement, to pass control
back to the main WBT file.
If a string of parameters is passed to the secondary WBT file, it will automatically be parsed
into individual variables with the names param1, param2, etc. (maximum of nine
parameters).    The variable param0 will be a count of the total number of parameters in the
string.

    This example in plain text:

; MAIN.WBT

old = AskLine("RENAME", "File to rename", "")

If !FileExist(old) Then Exit

new = AskLine("RENAME", "New name for %old%", "")

If FileExist(new) Then Exit

CallExt("rename.wbt", "%old% %new%")

; RENAME.WBT

old = param1

new = param2

FileRename(old, new)

Return

See Also:
Call, ParseData, Return

CallExt

; MAIN.WBT

old = AskLine("RENAME", "File to rename", "")

If !FileExist(old) Then Exit

new = AskLine("RENAME", "New name for %old%", "")

If FileExist(new) Then Exit

CallExt("rename.wbt", "%old% %new%")

; RENAME.WBT

old = param1

new = param2

FileRename(old, new)

Return

Char2Num

Converts the first character of a string to its numeric equivalent.

Syntax:
Char2Num (string)

Parameters:
"string" = any text string.    Only the first character will be converted.

Returns:
(integer) ANSI character code.

This function returns the 8-bit ANSI code corresponding to the first character of the string
parameter.
Note:    For the commonly-used characters (with codes below 128), ANSI and ASCII
characters are identical.

    This example in plain text:

; Show the hex equivalent of entered character

inpchar = AskLine("ANSI Equivalents", "Char:", "")

ansi = StrSub(inpchar, 1, 1)

ansiequiv = Char2Num(InpChar)

Message("ANSI Codes", "%ansi% => %ansiequiv%")

See Also:
Num2Char

Char2Num

; Show the hex equivalent of entered character

inpchar = AskLine("ANSI Equivalents", "Char:", "")

ansi = StrSub(inpchar, 1, 1)

ansiequiv = Char2Num(InpChar)

Message("ANSI Codes", "%ansi% => %ansiequiv%")

ClipAppend

Appends a string to the Clipboard.

Syntax:
ClipAppend (string)

Parameters:
"string" = text string to add to Clipboard.

Returns:
(integer) @TRUE if string was appended;

@FALSE if Clipboard ran out of memory.

Use this function to append a string to the Windows Clipboard.    The Clipboard must either
contain text data or be empty for this function to succeed.

    This example in plain text:

; The code below will append 2 copies of the

; Clipboard contents back to the Clipboard, resulting

; in 3 copies of the original contents with a CR/LF

; between each copy.

a = ClipGet()

crlf = StrCat(Num2Char(13), Num2Char(10))

ClipAppend(crlf)

ClipAppend(a)

ClipAppend(crlf)

ClipAppend(a)

See Also:
ClipGet, ClipPut

ClipAppend

; The code below will append 2 copies of the

; Clipboard contents back to the Clipboard, resulting

; in 3 copies of the original contents with a CR/LF

; between each copy.

a = ClipGet()

crlf = StrCat(Num2Char(13), Num2Char(10))

ClipAppend(crlf)

ClipAppend(a)

ClipAppend(crlf)

ClipAppend(a)

ClipGet

Returns the contents of the Clipboard.

Syntax:
ClipGet ()

Parameters:
(none)

Returns:
(string) clipboard contents.

Use this function to copy text from the Windows Clipboard into a string variable.
Note:    If the Clipboard contains an excessively large string a (fatal) out of memory error
may occur.

    This example in plain text:

; The code below will convert Clipboard contents to

; uppercase

ClipPut(StrUpper(ClipGet()))

a = ClipGet()

Message("UPPERCASE Clipboard Contents", a)

See Also:
ClipAppend, ClipPut

ClipGet

; The code below will convert Clipboard contents to

; uppercase

ClipPut(StrUpper(ClipGet()))

a = ClipGet()

Message("UPPERCASE Clipboard Contents", a)

ClipPut

Copies a string to the clipboard.

Syntax:
ClipPut (string)

Parameters:
"string" = any text string.

Returns:
(integer) @TRUE if string was copied;

@FALSE if clipboard ran out of memory.

Use this function to copy a string to the Windows Clipboard.    The previous Clipboard
contents will be lost.

    This example in plain text:

; The code below will convert Clipboard contents to

; lowercase

ClipPut(StrLower(ClipGet()))

a = ClipGet()

Message("lowercase Clipboard Contents", a)

See Also:
ClipAppend, ClipGet

ClipPut

; The code below will convert Clipboard contents to

; lowercase

ClipPut(StrLower(ClipGet()))

a = ClipGet()

Message("lowercase Clipboard Contents", a)

CurrentFile    (Command Post Program Only)

Returns the selected file name.

Syntax:
CurrentFile()

Returns:
(string) currently-selected file name.

When Command Post displays the files in the current directory, one of them is always
selected. It's the one with the dotted-line box around it.

This is different than a "highlighted" file. When a file is highlighted, it shows up in inverse
video (usually white-on-black). To find the file nanes that are hightlighted, see FileItemize.

    This example in plain text:

;Ask which program to run (default = current file)

TheFile = AskLine ("Run It","Program:", CurrentFile())

Run (TheFile,"")

See Also:
FileItemize, DirGet, DirItemize

Current File
;Ask which program to run (default = current file)

TheFile = AskLine ("Run It","Program:", CurrentFile())

Run (TheFile,"")

DateTime

Provides the current Date and time.

Syntax:
DateTime ()

Parameters:
(none)

Returns:
(string) today's date and time

This function will return the current date and time in a pre-formatted string.    The format it is
returned in depends on how it is set up in the international section of the WIN.INI file:
ddd mm:dd:yy hh:mm:ss XX
ddd dd:mm:yy hh:mm:ss XX
ddd yy:mm:dd hh:mm:ss XX
Where:

ddd is day of the week (e.g. Mon)

mm    is the month (e.g. 10)

dd    is the day of the month (e.g. 23)

yy    is the year (e.g. 90)

hh    is the hours

mm    is the minutes

ss    is the seconds

XX    is the Day/Night code (e.g. AM or PM)

Note:    Windows provides even more formatting options than this.
The WIN.INI file will be examined to determine which format to use.    You can adjust the
WIN.INI file via the International section of Control Panel if the format isn't what you
prefer.

    This example in plain text:

; assuming the current standard is U.S.

; (i.e. day    dd/mm/yy hh:mm:ss AM)

Message("Current Date & Time", DateTime())

would produce:

DateTime

; assuming the current standard is U.S.

; (i.e. day    dd/mm/yy hh:mm:ss AM)

Message("Current Date & Time", DateTime())

DDEExecute

Sends commands to a DDE server application.

Syntax:
DDEExecute (channel, command string)

Parameters:
(i) channel same integer that was returned by DDEInitiate.

(s) command string one or more commands to be executed by the server
app.

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

Use the DDEInitiate function to obtain a channel number.
In order to use this function successfully, you will need appropriate documentation for the
server application you wish to access, which must provide information on the DDE functions
that it supports and the correct syntax to use.

    This example in plain text:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("wincheck", "TUT")

If channel == 0 Then Goto failed

result = DDEExecute(channel, '[WriteCheck:p="Shorewood
Apartments",t=580.00,l="Rent"]')

DDETerminate(channel)

WinClose("WinCheck")

If result == @FALSE Then Goto Failed

Message("DDE Execute", "Operation complete")

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:
DDEInitiate, DDEPoke, DDERequest, DDETerminate, DDETimeout

DDEExecute

Run("wincheck.exe", "TUT")

channel = DDEInitiate("wincheck", "TUT")

If channel == 0 Then Goto failed

result = DDEExecute(channel, '[WriteCheck:p="Shorewood
Apartments",t=580.00,l="Rent"]')

DDETerminate(channel)

WinClose("WinCheck")

If result == @FALSE Then Goto Failed

Message("DDE Execute", "Operation complete")

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

DDEInitiate

Opens a DDE channel.

Syntax:
DDEInitiate (app name, topic name)

Parameters:
(s) app name name of the application (without the E extension).

(s) topic name name of the topic you wish to access.

Returns:
(i) communications channel.

This function opens a DDE communications channel with a server application.    The
communications channel can be subsequently used by the DDEExecute, DDEPoke, and
DDERequest functions.    You should close this channel with DDETerminate when you are
finished using it.    If the communications channel cannot be opened as requested,
DDEInitiate returns a channel number of 0.
You can call DDEInitiate more than once, in order to carry on multiple DDE conversations
(with multiple applications) simultaneously.
In order to use this function successfully, you will need appropriate documentation for the
server application you wish to access, which must provide information on the DDE functions
that it supports and the correct syntax to use.

    This example in plain text:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto FailedMessage("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:
DDEExecute, DDEPoke, DDERequest, DDETerminate, DDETimeout

DDEInitiate

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto FailedMessage("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

DDEPoke

Sends data to a DDE server application.

Syntax:
DDEPoke (channel, item name, item value)

Parameters:
(i) channel same integer that was returned by DDEInitiate.

(s) item name identifies the type of data being sent.

(s) item value actual data to be sent to the server.

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

Use the DDEInitiate function to obtain a channel number.
In order to use this function successfully, you will need appropriate documentation for the
server application you wish to access, which must provide information on the DDE functions
that it supports and the correct syntax to use.

    This example in plain text:

Run("reminder.exe", "")

channel = DDEInitiate("Reminder", "items")

If channel == 0 Then Goto failed

result = DDEPoke(channel, "all", "11/3/92 Misc Remember to vote")

DDETerminate(channel)

WinClose("Reminder")

If result == @FALSE Then Goto Failed

Message("DDE Poke", "Operation complete")

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:
DDEExecute, DDEInitiate, DDERequest, DDETerminate, DDETimeout

DDEPoke

Run("reminder.exe", "")

channel = DDEInitiate("Reminder", "items")

If channel == 0 Then Goto failed

result = DDEPoke(channel, "all", "11/3/92 Misc Remember to vote")

DDETerminate(channel)

WinClose("Reminder")

If result == @FALSE Then Goto Failed

Message("DDE Poke", "Operation complete")

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

DDERequest

Gets data from a DDE server application.

Syntax:
DDERequest (channel, item name)

Parameters:
(i) channel same integer that was returned by DDEInitiate.

(s) item name identifies the data to be returned by the server.

Returns:
(s) information returned from the server.

Use the DDEInitiate function to obtain a channel number.
In order to use this function successfully, you will need appropriate documentation for the
server application you wish to access, which must provide information on the DDE functions
that it supports and the correct syntax to use.

    This example in plain text:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:
DDEExecute, DDEInitiate, DDEPoke, DDETerminate, DDETimeout

DDERequest

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

DDETerminate

Closes a DDE channel.

Syntax:
DDETerminate (channel)

Parameters:
(i) channel same integer that was returned by DDEInitiate.

Returns:
(i) always 1.

This function closes a communications channel that was opened with DDEInitiate.

    This example in plain text:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:
DDEExecute, DDEInitiate, DDEPoke, DDERequest, DDETimeout

DDETerminate

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

DDETimeout

Sets the DDE timeout value.

Syntax:
DDETimeout (value)

Parameters:
(i) value DDE timeout time.

Returns:
(i) previous timeout value.

Sets the timeout time for subsequent DDE functions to specified value in milliseconds
(1/1000 second).    Default is 3000 milliseconds (3 seconds).    If the time elapses with no
response, the WIL Interpreter will return an error.    The value set with DDETimeout stays in
effect until changed by another DDETimeout statement or until the WIL program ends,
whichever comes first.

    This example in plain text:

DDETimeout(5000)

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:

DDEExecute, DDEInitiate, DDEPoke, DDERequest, DDETerminate

DDETimeout

DDETimeout(5000)

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

Debug

Controls the debug mode.

Syntax:
Debug (mode)

Parameters:
mode = @ON or @OFF

Returns:
(integer) previous debug mode

Use this function to turn the debug mode on or off.    The default is @OFF.
When debug mode is on, the interpeter will display the statement just executed, its result (if
any), any error conditions, and the next statement to execute.
The statements are displayed in a special dialog box.    As you can see in the Example
section following, the dialog box gives the user four options:    Next, Run, Cancel and Show Var.
Next executes the next statement and remains in debug mode.
Run exits debug mode and runs the rest of the program normally.
Cancel terminates the current batch file.
Show Var displays the contents of a variable whose name the user entered in the edit box.

    This example in plain text:

Debug(@ON)

a = 6

q = AskYesNo("Testing Debug Mode", "Is the Pope Catholic")

Debug(@OFF)

b = a + 4

produces:

... then, if the user presses Next:

... and presses Next again:

... and then presses Yes:

etc.    (If the user had pressed No it would have said "VALUE=>0".)

See Also:
ErrorMode, LastError

Debug

Debug(@ON)

a = 6

q = AskYesNo("Testing Debug Mode", "Is the Pope Catholic")

Debug(@OFF)

b = a + 4

Delay

Pauses execution for a specified amount of time.

Syntax:
Delay (seconds)

Parameters:
seconds = integer seconds to delay (2 - 15)

Returns:
(integer) always @TRUE

This function causes the currently-executing batch file to be suspended for the specified
period of time.    Seconds must be an integer between 2 and 15.    Smaller or larger
numbers will be adjusted accordingly.

    This example in plain text:

Message("Wait", "About 15 seconds")

Delay(15)

Message("Hi", "I'm Baaaaaaack")

See Also:
Yield

Delay

Message("Wait", "About 15 seconds")

Delay(15)

Message("Hi", "I'm Baaaaaaack")

DialogBox

Pops up a Windows dialog box defined by the WBD template file.

 Dialog Box Examples
Syntax:

DialogBox ("title", "WBD file")

Parameters:
"title" = the title of the dialog box.

"WBD file" = the name of the WBD template file.

Returns:
(integer) always 0

Each element in the template file is enclosed in square brackets, and consists of a variable
name, followed by one of the following symbols:

Symbol Meaning Example

+ check box [backup+1Save backup]

edit box [newfile#]

\ file selection listbox [editfile\]

^ radio button [prog^1Note]          [prog^2Write]

$ variable [var$]

The number following the check box and radio button symbols is the value which will get
assigned to the variable if its corresponding box is checked, or button is selected.    Following
the number is the descriptive text which will appear next to the box or button.
When used in conjunction with a file selection list box variable with the same name, two of
these symbols have special meanings:

file mask edit box [editfile#]

$ directory variable [editfile$]

Anything not appearing within square brackets is displayed as text.

    This example in plain text:

[editfile$]

File mask [editfile#]

[editfile\]

[editfile\]

[editfile\]

[editfile\]

[editfile\]

[backup+1Save backup of file]

[prog^1Notepad]          [prog^2WinEdit]

DialogBox

[editfile$]

File mask [editfile#]

[editfile\]

[editfile\]

[editfile\]

[editfile\]

[editfile\]

[backup+1Save backup of file]

[prog^1Notepad]          [prog^2WinEdit]

DirChange

Changes the current directory.    Can also log a new drive.

Syntax:
DirChange ([d:]path)

Parameters:
"[d:]" = an optional disk drive to log onto.

"path" = the desired path.

Returns:
(integer) @TRUE if directory was changed;

@FALSE if the path could not be found.

Use this function to change the current working directory to another directory, either on the
same or a different disk drive.

    This example in plain text:

DirChange("c:\")

TextBox("This is your CONFIG.SYS file", "config.sys")

See Also:
DirGet, DirHome, LogDisk

DirChange

DirChange("c:\")

TextBox("This is your CONFIG.SYS file", "config.sys")

DirGet

Gets the current working directory.

Syntax:
DirGet ()

Parameters:
(none)

Returns:
(string) =current working directory.

Use this function to determine which directory we are currently in.    It's especially useful
when changing drives or directories temporarily.

    This example in plain text:

; Get, then restore current working directory

origdir = DirGet()

DirChange("c:\")

FileCopy("config.sys", "%origdir%xxxtemp.xyz", @FALSE)

DirChange(origdir)

See Also:
DirHome

DirGet

; Get, then restore current working directory

origdir = DirGet()

DirChange("c:\")

FileCopy("config.sys", "%origdir%xxxtemp.xyz", @FALSE)

DirChange(origdir)

DirHome

Returns directory containing the WinBatch executable files.

Syntax:
DirHome ()

Parameters:
(none)

Returns:
(string) pathname of the home directory.

Use this function to determine the location of WINBATCH.EXE.

    This example in plain text:

a = DirHome()

Message("WinBatch Executable is in ", a)

See Also:
DirGet

DirHome

a = DirHome()

Message("WinBatch Executable is in ", a)

DirItemize

Returns a space-delimited list of directories.

Syntax:
DirItemize (dir-list)

Parameters:
"dir-list" = a string containing a set of subdirectory names, which may be
wildcarded.

Returns:
(string) list of directories.

This function compiles a list of subdirectories and separates the names with spaces.
This is especially useful in conjunction with the ItemSelect function, which enables the user
to choose an item from such a space-delimited list.
DirItemize("*.*") returns all dirs

    This example in plain text:

a = DirItemize("*")

ItemSelect("Directories", a, " ")

See Also:
FileItemize, WinItemize, ItemSelect

DirItemize

a = DirItemize("*")

ItemSelect("Directories", a, " ")

DirMake

Creates a new directory.

Syntax:
DirMake ([d:]path)

Parameters:
"[d:]" = the desired disk drive.

"path" = the path to create.

Returns:
(integer) @TRUE if the directory was successfully created;

@FALSE if it wasn't.

Use this function to create a new directory.

 This example in plain text:

DirMake("c:\xxxstuff")

See Also:
DirRemove, DirRename

;DirMake

DirMake("c:\xxxstuff")

DirRemove

Removes a directory.

Syntax:
DirRemove (dir-list)

Parameters:
"dir-list" = a space-delimited list of directory pathnames.

Returns:
(integer) @TRUE if the directory was successfully removed;

@FALSE if it wasn't.

Use this function to delete directories.    You can delete one or more at a time by separating
directory names with spaces.    You cannot, however, use wildcards.

    This example in plain text:

DirRemove("c:\xxxstuff")

DirRemove("tempdir1 tempdir2 tempdir3")

See Also:
DirMake, DirRename

 ; DirRemove

DirRemove("c:\xxxstuff")

DirRemove("tempdir1 tempdir2 tempdir3")

DirRename

Renames a directory.

Syntax:
DirRename ([d:]oldpath, [d:]newpath)

Parameters:
"oldpath" = existing directory name, with optional drive.

"newpath" = new name for directory.

Returns:
(integer) @TRUE if the directory was successfully renamed;

@FALSE if it wasn't.

    This example in plain text:

DirRename("c:\temp", "c:\work")

See Also:
DirMake, DirRemove

 ; DirRename

DirRename("c:\temp", "c:\work")

DirWindows

Returns the name of the Windows or Windows System directory.

Syntax:
DirWindows (request#)

Parameters:
(i) request# see below.

Returns:
(s) directory name.

This function returns the name of either the Windows directory or the Windows System
directory, depending on the request# specified.

Req# Return value

0 Windows directory

1 Windows System directory

 This example in plain text:

DirChange(DirWindows(0))

ini = ItemSelect("Select file to edit", FileItemize("*.ini"), " ")

Run("notepad.exe, ini)

See Also:
DirHome

; DirWindows

DirChange(DirWindows(0))

ini = ItemSelectItemSelect.cmd("Select file to edit", FileItemize("*.ini"), " ")

RunRun.cmd("notepad.exe, ini)

DiskFree

Finds the total space available on a group of drives.

Syntax:
DiskFree (drive-list)

Parameters:
"drive-list" = at least one drive letter, separated by spaces.

Returns:
(integer) the number of bytes available on all the specified drives.

This function takes a string consisting of drive letters, separated by spaces.    Only the first
character of each non-blank group of characters is used to determine the drives, so you can
use just the drive letters, or add a colon (:), or add a backslash (\), or even a whole
pathname, and still get a perfectly valid result.

    This example in plain text:

size = DiskFree("c d")

Message("Space Available on C: & D:", size)

See Also:
FileSize

;DiskFree

size = DiskFree("c d")

Message("Space Available on C: & D:", size)

DiskHide (CP only)

Hides disk drives from display.

Syntax:
DiskHide (drive-list)

Parameters:
(s) drive-list string of drives to hide (non-delimited).

Returns:
(i) always 1.

This function causes the drive letters specified in "drive-list" to be removed from the disk
drive icon display.

    This example in plain text:

DiskHide("STUVW")

See Also:
DiskReset, DiskUpdate

;DiskHide

DiskHide("STUVW")

DiskReset (Command Post program only)

Re-examines available disk drives.

Syntax:
DiskReset ()

Parameters:
(none)

Returns:
(i) always 0.

Examines disk drives on system, and adds any new drives found to the display of drive
icons. If an existing drive was hidden with the DiskHide function, it will no longer be hidden
(unlike the DiskUpdate function).

    This example in plain text:

DiskReset()

See Also:
DiskHide, DiskUpdate

;DiskReset

DiskReset()

DiskScan

Returns list of drives.

Syntax:
DiskScan (request#)

Parameters:
(i) request# see below.

Returns:
(s) drive list.

Scans disk drives on the system, and returns a space-delimited list of drives of the type
specified by request#, in the form "A: B: C: D: ".
The request# is a bitmask, so adding the values together (except for 0) returns all drive
types specified; eg., a request# of 3 returns floppy plus local hard drives.

Req# Return value

0 List of unused disk IDs

1 List of floppy drives

2 List of local hard drives

4 List of remote (network) drives

    This example in plain text:

hd = DiskScan(2)

Message("Hard drives on system", hd)

See Also:
DiskFree, LogDisk

;DiskScan

hd = DiskScan(2)

Message("Hard drives on system", hd)

DiskUpdate (Command Post program only)

Updates drive icon display.

Syntax:
DiskUpdate ()

Parameters:
(none)

Returns:
(i) always 0.

Examines disk drives on system, and adds any new drives found to the display of drive
icons. If an existing drive was hidden with the DiskHide function, it will remain hidden
(unlike the DiskReset function).

    This example in plain text:

DiskUpdate()

See Also:
DiskHide, DiskReset

;DiskUpdate

DiskUpdate()

Display

Displays a message to the user for a specified period of time.

Syntax:
Display (seconds, title, text)

Parameters:
seconds = integer seconds to display the message (1-15).

"title" = title of the window to be displayed.

"text" = text of the window to be displayed.

Returns:
(integer) always @TRUE.

Use this function to display a message for a few seconds, and then continue processing
without user input.
Seconds must be an integer between 1 and 15.    Smaller or larger numbers will be adjusted
accordingly.
The display box may be prematurely canceled by the user by clicking a mouse button, or
hitting any key.

    This example in plain text:

Display(3, "Current window is", WinGetActive())

which produces something like this:

See Also:
Pause, Message

;Display

Display(3, "Current window is", WinGetActive())

DOSVersion

Returns the version numbers of the current version of DOS.

Syntax:
DOSVersion (level)

Parameters:
level = @MAJOR or @MINOR.

Returns:
(integer) integer or decimal part of DOS version number.

@MAJOR returns the integer part (to the left of the decimal).
@MINOR returns the decimal part (to the right of the decimal).
If the version of DOS in use is 4.0, then:

DOSVersion(@MAJOR) == 4

DOSVersion(@MINOR) == 0

    This example in plain text:

i = DOSVersion(@MAJOR)

d = DOSVersion(@MINOR)

If StrLen(d) == 1 Then d = StrCat("0", d)

Message("DOS Version", "%i%.%d%")

See Also:
Environment, Version, WinVersion

;DOSVersion

i = DOSVersion(@MAJOR)

d = DOSVersion(@MINOR)

If StrLen(d) == 1 Then d = StrCat("0", d)

Message("DOS Version", "%i%.%d%")

Drop

Removes variables from memory.

Syntax:
Drop (var, [var]...)

Parameters:
var = variable names to remove.

Returns:
(integer) always @TRUE.

This function removes variables from the language processor's variable list, and recovers the
memory associated with the variable (and possibly related string storage).

    This example in plain text:

a = "A variable"

b = "Another one"

Drop(a, b) ; This removes A and B from memory

;Drop

a = "A variable"

b = "Another one"

Drop(a, b) ; This removes A and B from memory

EndSession

Ends the Windows session.

Syntax:
EndSession ()

Parameters:
(none)

Returns:
(integer) always 0.

Use this command to end the Windows session.    This command is equivalent to closing the
Program Manager window.

    This example in plain text:

sure = AskYesNo ("End Session", "You SURE you want to exit Windows?")

If sure == @No Then Goto cancel

EndSession()

:cancel

Message("", "Exit Windows canceled")

See Also:
Exit, WinClose, WinCloseNot

;EndSession

sure = AskYesNo ("End Session", "You SURE you want to exit Windows?")

If sure == @No Then Goto cancel

EndSession()

:cancel

Message("", "Exit Windows canceled")

Environment

Gets a DOS environment variable.

Syntax:
Environment (env-variable)

Parameters:
"env-variable" = any defined environment variable.

Returns:
(string) environment variable contents.

Use this function to query the DOS environment.

    This example in plain text:

; Display the PATH for this DOS session

currpath = Environment("PATH")

Message("Current DOS Path", currpath)

See Also:
IniRead, Version, WinVersion

;Environment

; Display the PATH for this DOS session

currpath = Environment("PATH")

Message("Current DOS Path", currpath)

ErrorMode

Specifies how to handle errors.

Syntax:
ErrorMode (mode)

Parameters:
mode = @CANCEL or @NOTIFY or @OFF.

Returns:
(integer) previous error setting.

Use this function to control the effects of runtime errors.    The default is @CANCEL,
meaning the execution of the batch file will be canceled for any error.
@CANCEL:    All runtime errors will cause execution to be canceled.    The user will be
notified which error occurred.
@NOTIFY:    All runtime errors will be reported to the user, and the user can choose to
continue if it isn't fatal.
@OFF:    Minor runtime errors will be suppressed. Moderate and fatal errors will be reported
to the user.    User has the option of continuing if the error is not fatal.
In general, we suggest the normal state of the program should be ErrorMode(@CANCEL),
especially if you are writing a batch file for others to use.    You can always suppress errors
you expect will occur and then re-enable ErrorMode (@CANCEL).

    This example in plain text:

; Delete xxxtest.xyz.    If file doesn't exist,

; continue execution; don't stop

prevmode = ErrorMode(@OFF)

FileDelete("c:\xxxtest.xyz")

ErrorMode(prevmode)

See Also:
Debug, LastError

;ErrorMode

; Delete xxxtest.xyz.    If file doesn't exist,

; continue execution; don't stop

prevmode = ErrorMode(@OFF)

FileDelete("c:\xxxtest.xyz")

ErrorMode(prevmode)

Exclusive

Controls whether or not other Windows programs will get any time to execute.

Syntax:
Exclusive (mode)

Parameters:
mode = @ON or @OFF.

Returns:
(integer) previous Exclusive mode.

Exclusive(@OFF) is the default mode.    In this mode,the interpeter is well-behaved toward
other Windows applications.
Exclusive(@ON) allows WIL files to run somewhat faster, but causes the interpeter to be
"greedier" about sharing processing time with other active Windows applications.    For the
most part, this mode is useful only when you have a series of WIL statements which must be
executed in quick succession.

    This example in plain text:

Exclusive(@ON)

x = 0

start = DateTime()

:add

x = x + 1

If x < 1000 Then Goto add

stop = DateTime()

crlf = StrCat(Num2Char(13), Num2Char(10))

Message("Times", "Start: %start%%crlf%Stop:    %stop%")

Exclusive(@OFF)

;Exclusive

Exclusive(@ON)

x = 0

start = DateTime()

:add

x = x + 1

If x < 1000 Then Goto add

stop = DateTime()

crlf = StrCat(Num2Char(13), Num2Char(10))

Message("Times", "Start: %start%%crlf%Stop:    %stop%")

Exclusive(@OFF)

Execute

Executes a statement in a protected environment.    Any errors encountered are recoverable.

Syntax:
Execute statement

Parameters:
"statement" = is (hopefully) an executable statement.

Use this command to execute computed or user-entered statements.    Due to the built-in
error recovery associated with Execute, it is ideal for interactive execution of user-entered
commands.
Note that the Execute command doesn't operate on a string, per se, but rather on a direct
statement.    If you want to put a code segment into a string variable, you must use the
substitution feature of the language, as in the example below.

    This example in plain text:

cmd = ""

cmd = AskLine("WIL Interactive", "Command:", cmd)

Execute %cmd%

;Execute

cmd = ""

cmd = AskLine("WIL Interactive", "Command:", cmd)

Execute %cmd%

Exit

Terminates the batch file being interpreted.

Syntax:
Exit

Use this command to prematurely exit a batch file process.    An exit is implied at the end of
each batch file.

    This example in plain text:

a = 100

Message("The value of a is", a)

Exit

See Also:
Pause

;Exit

a = 100

Message("The value of a is", a)

Exit

FileAppend

Appends one or more files to another file.

Syntax:
FileAppend (source-list, destination)

Parameters:
"source-list" = a string containing one or more filenames, which may be wildcarded.

"destination" = target file name.

Returns:
(integer) @TRUE if all files were appended successfully;

@FALSE if at least one file wasn't appended.

Use this function to append an individual file or a group of files to the end of an existing file. 
If "destination" does not exist, it will be created.
The file(s) specified in "source-list" will not be modified by this function.
"Source-list" may contain * and ? wildcards.    "Destination" may not contain wildcards of any
type; it must be a single file name.

   

FileAppend("c:\config.sys", "c:\misc\config.sav")

DirChange("c:\batch")

FileDelete("allbats.fil")

FileAppend("*.bat", "allbats.fil")

See Also:
FileCopy, FileDelete, FileExist

FileAttrGet

Returns file attributes.

Syntax:
FileAttrGet (filename)

Parameters:
(s) filename file whose attributes you want to determine.

Returns:
(s) attribute settings.

Returns attributes for the specified file, in a string of the form "RASH".    This string is
composed of four individual attribute characters, as follows:

Char Symbol Meaning

1 R Read-only ON

2 A Archive ON

3 S System ON

4 H Hidden ON

A hyphen in any of these positions indicates that the specified attribute is OFF.    For
example, the string "-A-H" indicates a file which has the Archive and Hidden attributes set.

    This example in plain text:

editfile = "c:\config.sys"

attr = FileAttrGet(editfile)

If StrSub(attr, 1, 1) == "R" Then Goto readonly

Run("notepad.exe", editfile)

Exit

:readonly

Message("File is read-only", "Cannot edit %editfile%")

See Also:
FileAttrSet, FileTimeGet

;FileAppend

editfile = "c:\config.sys"

attr = FileAttrGet(editfile)

If StrSub(attr, 1, 1) == "R" Then Goto readonly

Run("notepad.exe", editfile)

Exit

:readonly

Message("File is read-only", "Cannot edit %editfile%")

FileAttrSet

Sets file attributes.

Syntax:
FileAttrSet (file-list, settings)

Parameters:
(s) file-list space-delimited list of files.

(s) settings new attribute settings for those file(s).

Returns:
(i) always 0.

The attribute string consists of one or more of the following characters (an upper case letter
turns the specified attribute ON, a lower case letter turns it OFF):

R read only ON

A archive ON

S system ON

H hidden ON

r read only OFF

a archive OFF

s system OFF

h hidden OFF

   

FileAttrSet("win.ini system.ini", "rAsH")

FileAttrSet("c:\command.com", "R")

See Also:
FileAttrGet, FileTimeTouch

FileClose

Closes a file.

Syntax:
FileClose (filehandle)

Parameters:
filehandle = same integer that was returned by FileOpen.

Returns:
(integer) always 0.

    This example in plain text:

; the hard way to copy an ASCII file

old = FileOpen("config.sys", "READ")

new = FileOpen("sample.txt", "WRITE")

:top

x = FileRead(old)

If x != "*EOF*" Then FileWrite(new, x)

If x != "*EOF*" Then Goto top

FileClose(new)

FileClose(old)

See Also:
FileOpen, FileRead, FileWrite

;FileAttrSet

; the hard way to copy an ASCII file

old = FileOpen("config.sys", "READ")

new = FileOpen("sample.txt", "WRITE")

:top

x = FileRead(old)

If x != "*EOF*" Then FileWrite(new, x)

If x != "*EOF*" Then Goto top

FileClose(new)

FileClose(old)

FileCopy

Copies files.

Syntax:
FileCopy (source-list, destination, warning)

Parameters:
"source-list" = a string containing one or more filenames, which may be wildcarded.

"destination" = target file name.

warning = @TRUE if you want a warning before

overwriting existing files;

@FALSE if no warning desired.

Returns:
(integer) @TRUE if all files were copied successfully;

@FALSE if at least one file wasn't copied.

Use this function to copy an individual file, a group of files using wildcards, or several groups
of files by separating the names with spaces.
You can also copy files to any COM or LPT device.
"Source-list" may contain * and ? wildcards.    "Destination" may contain the * wildcard only.

   

FileCopy("c:\config.sys", "d:", @FALSE)

FileCopy("c:*.sys", "d:devices*.sys", @TRUE)

FileCopy("c:\config.sys", "LPT1", @FALSE)

See Also:
FileDelete, FileExist, FileLocate, FileMove, FileRename

FileDelete

Deletes files.

Syntax:
FileDelete (file-list)

Parameters:
"file-list" = a string containing one or more filenames, which may be wildcarded.

Returns:
(integer) @TRUE if all the files were deleted;

@FALSE if a file didn't exist or is marked with the READ-ONLY attribute.

Use this function to delete an individual file, a group of files using wildcards, or several
groups of files by separating the names with spaces.

    This example in plain text:

FileDelete("*.bak temp???.fil")

See Also:
FileExist, FileLocate, FileMove, FileRename

;FileCopy

FileDelete("*.bak temp???.fil")

FileExist

Tests for the existence of files.

Syntax:
FileExist (filename)

Parameters:
"filename" = either a fully qualified filename with drive and path, or just a filename
and extension.

Returns:
(integer) @TRUE if the file exists;

@FALSE if it doesn't or if the pathname is invalid.

This function is used to test whether or not a specified file exists.
If a fully-qualified file name is used, only the specified drive and directory will be checked for
the desired file.    If only the root and extension are specified, then first the current directory
is checked for the file, and then, if the file is not found in the current directory, all directories
in the DOS path are searched.

   

; check for file in current directory

fex = FileExist(StrCat(DirGet(), "myfile.txt"))

tex = StrSub("NOT", 1, StrLen("NOT") * fex)

Message("MyFile.Txt"," Is %tex%in the current directory")

; check for file someplace along path

fex = FileExist("myfile.txt")

tex = StrSub("NOT", 1, StrLen("NOT") * fex)

Message("MyFile.Txt", " Is %tex% in the DOS path")

See Also:
FileLocate

FileExtension

Returns extension of file.

Syntax:
FileExtension (filename)

Parameters:
"filename" = [optional path]complete file name, with extension.

Returns:
(string) file extension.

FileExtension parses the passed filename and returns the extension part of the filename.

    This example in plain text:

; prevent the user from editing a COM or E file

allfiles = FileItemize("*.*")

editfile = ItemSelect("Select file to edit", allfiles, " ")

ext = FileExtension(editfile)

If (ext == "com") || (ext == "exe") Then Goto noedit

Run("notepad.exe", editfile)

exit

:noedit

Message ("Sorry", "You may not edit a program file")

See Also:
FileRoot, FilePath

;FileExist

; prevent the user from editing a COM or E file

allfiles = FileItemize("*.*")

editfile = ItemSelect("Select file to edit", allfiles, " ")

ext = FileExtension(editfile)

If (ext == "com") || (ext == "exe") Then Goto noedit

Run("notepad.exe", editfile)

exit

:noedit

Message ("Sorry", "You may not edit a program file")

FileHilite (Command Post program only)

Highlights or unhighlights files in file display.

Syntax:
FileHilite (file-masks, mode)

Parameters:
(s) file-masks one or more file specifications, which may be wildcarded.

(i) mode @TRUE Highlight matching files.

@FALSE Unhighlight matching files.

Returns:
(i) total number of files highlighted or unhighlighted.

This function causes one or more groups of files in the file display window to be highlighted
(selected) or unhighlighted (de-selected).    This is useful to select files for an operation such
as FileCopy, or just to spotlight certain files in a directory.
Multiple file specifications must be space-delimited.

   

FileHilite("*.ZIP *.LZH *.ARC", @TRUE)

FileHilite("OLD*.ZIP", @FALSE)

See Also:
CurrentFile, FileExtension

FileItemize

Returns a space-delimited list of files.

Syntax:
FileItemize (file-list)

Parameters:
"file-list" = a string containing a list of filenames, which may be wildcarded.

Returns:
(string) space-delimited list of files.

This function compiles a list of filenames and separates the names with spaces.
This is especially useful in conjunction with the ItemSelect function, which lets the user
choose an item from such a space-delimited list.

   

FileItemize("*.bak") ;all BAK files

FileItemize("*.arc *.zip *.lzh") ;compressed files

; Get which .INI file to edit

ifiles = FileItemize("c:\windows*.ini")

ifile = ItemSelect(".INI Files", ifiles, " ")

RunZoom("notepad", ifile)

Drop(ifiles, ifile)

See Also:
DirItemize, WinItemize, ItemSelect

FileLocate

Finds file in current directory or along the DOS path.

Syntax:
FileLocate (filename)

Parameters:
"filename" = root name, ".", and extension.

Returns:
(string) fully-qualified path name.

This function is used to obtain the fully qualified path name of a file.    The current directory
is checked first, and if the file is not found, the DOS path is searched.    The first occurrence
of the file is returned.

    This example in plain text:

; Edit WIN.INI

winini = FileLocate("win.ini")

If winini == "" Then Goto notfound

Run("notepad.exe", winini)

Exit

:notfound

Message("???", "WIN.INI not found")

See Also:
FileExist

;FileHilite

; Edit WIN.INI

winini = FileLocate("win.ini")

If winini == "" Then Goto notfound

Run("notepad.exe", winini)

Exit

:notfound

Message("???", "WIN.INI not found")

FileMove

Moves files.

Syntax:
FileMove (source-list, destination, warning)

Parameters:
"source-list" = one or more filenames separated by spaces.

"destination" = target filename.

warning = @TRUE if you want a warning before overwriting existing files;

@FALSE if no warning desired.

Returns:
(integer) @TRUE if the file was moved;

@FALSE if the source file was not found or had the READ-ONLY attribute, or the
target filename is invalid.

Use this function to move an individual file, a group of files using wildcards, or several
groups of files by separating the names with spaces.
You can also move files to another drive, or to any COM or LPT device.
"Source-list" may contain * and ? wildcards.    "Destination" may contain the * wildcard only.

   

FileMove("c:\config.sys", "d:", @FALSE)

FileMove("c:*.sys", "d:*.sys", @TRUE)

See Also:
FileCopy, FileDelete, FileExist, FileLocate, FileRename

FileOpen

Opens a STANDARD ASCII (only) file for reading or writing.

Syntax:
FileOpen (filename, open-type)

Parameters:
"filename" = name of the file to open.

open-type = READ or WRITE.

Returns:
(special integer) filehandle

The "filehandle" returned by the FileOpen function is subsequently used by the FileRead,
FileWrite, and FileClose functions.

   

; To open for reading:

FileOpen("stuff.txt", "READ")

; To open for writing:

FileOpen("stuff.txt", "WRITE")

See Also:
FileClose, FileRead, FileWrite

FilePath

Returns path of file.

Syntax:
FilePath (filename)

Parameters:
"filename" = fully qualified file name, including path.

Returns:
(string) fully qualified path name.

FilePath parses the passed filename and returns the drive and path of the file specification,
if any.

    This example in plain text:

coms = Environment("COMSPEC")

compath = FilePath(coms)

Message("", "Your command processor is located in the %compath% directory")

See Also:
FileRoot, FileExtension

;FileMove

coms = Environment("COMSPEC")

compath = FilePath(coms)

Message("", "Your command processor is located in the %compath% directory")

FileRead

Reads data from a file.

Syntax:
FileRead (filehandle)

Parameters:
filehandle = same integer that was returned by FileOpen.

Returns:
(string) line of data read from file.

When the end of the file is reached, the string *EOF* will be returned.

    This example in plain text:

handle = FileOpen("autoexec.bat", "READ")

:top

line = FileRead(handle)

Display(4, "AUTOEXEC DATA", line)

If line != "*EOF*" Then Goto top

FileClose(handle)

See Also:
FileOpen, FileClose, FileWrite

;FileRead

handle = FileOpen("autoexec.bat", "READ")

:top

line = FileRead(handle)

Display(4, "AUTOEXEC DATA", line)

If line != "*EOF*" Then Goto top

FileClose(handle)

FileRename

Renames files.

Syntax:
FileRename (source-list, destination)

Parameters:
"source-list" = one or more filenames, separated by spaces.

"destination" = target filename.

Returns:
(integer) @TRUE if the file was renamed;

@FALSE if the source file was not found or had the READ-ONLY attribute, or the
target filename is invalid.

Use this function to rename an individual file, a group of files using wildcards, or several
groups of files by separating the names with spaces.
Note: Unlike FileMove, you cannot make a file change its resident disk drive with
FileRename.
"Source-list" may contain * and ? wildcards.    "Destination" may contain the * wildcard only.

   

FileRename("c:\config.sys", "config.old")

FileRename("c:*.txt", "*.bak")

See Also:
FileCopy, FileExist, FileLocate, FileMove

FileRoot

Returns root of file.

Syntax:
FileRoot (filename)

Parameters:
"filename" = [optional path]complete file name, with extension.

Returns:
(string) file root.

FileRoot parses the passed filename and returns the root part of the filename.

    This example in plain text:

allfiles = FileItemize("*.*")

editfile = ItemSelect("Select file to edit", allfiles, " ")

root = FileRoot(editfile)

ext = FileExtension(editfile)

lowerext = StrLower(ext)

nicefile = StrCat(root, ".", lowerext)

Message("", "You are about to edit %nicefile%.")

Run("notepad.exe", editfile)

See Also:
FileExtension, FilePath

;FileRename

allfiles = FileItemize("*.*")

editfile = ItemSelect("Select file to edit", allfiles, " ")

root = FileRoot(editfile)

ext = FileExtension(editfile)

lowerext = StrLower(ext)

nicefile = StrCat(root, ".", lowerext)

Message("", "You are about to edit %nicefile%.")

Run("notepad.exe", editfile)

FileSize

Finds the total size of a group of files.

Syntax:
FileSize (file-list)

Parameters:
"file-list" = zero or more filenames, separated by spaces.

Returns:
(integer) total bytes taken up by the specified files.

This function returns the total size of the specified files.    Note that it doesn't handle
wildcarded filenames.    You can, however, use FileItemize on a wildcarded filename and
use the resulting string as a FileSize parameter.

    This example in plain text:

size = FileSize(FileItemize("*.*"))

Message("Size of All Files in Directory", size)

See Also:
DiskFree

;FileSize

size = FileSize(FileItemize("*.*"))

Message("Size of All Files in Directory", size)

FileTimeGet

Returns file date and time.

Syntax:
FileTimeGet (filename)

Parameters:
(s) filename name of file for which you want the date and time.

Returns:
(s) file date and time.

This function will return the date and time of a file, in a pre-formatted string.    The format it
is returned in depends on the date format specified in the [International] section of the
WIN.INI file:
ddd mm:dd:yy hh:mm:ss XX
ddd dd:mm:yy hh:mm:ss XX
ddd yy:mm:dd hh:mm:ss XX
Where:

ddd is day of the week (e.g. Mon)

mm    is the month (e.g. 10)

dd    is the day of the month (e.g. 23)

yy    is the year (e.g. 90)

hh    is the hours

mm    is the minutes

ss    is the seconds

XX    is the Day/Night code (e.g. AM or PM)

The WIN.INI file will be examined to determine which format to use.    You can adjust the
WIN.INI file via the International section of Control Panel if the format isn't what you
prefer.

    This example in plain text:

oldtime = FileTimeGet("win.ini")

Run("notepad.exe", "win.ini")

WinWaitClose("Notepad - WIN.INI")

newtime = FileTimeGet("win.ini")

If StrCmp(oldtime, newtime) == 0 Then Exit

Message("", "WIN.INI has been changed")

See Also:
FileAttrGet, FileTimeTouch

;FileTimeGet

oldtime = FileTimeGet("win.ini")

Run("notepad.exe", "win.ini")

WinWaitClose("Notepad - WIN.INI")

newtime = FileTimeGet("win.ini")

If StrCmp(oldtime, newtime) == 0 Then Exit

Message("", "WIN.INI has been changed")

FileTimeTouch

Sets file(s) to current time.

Syntax:
FileTimeTouch (file-list)

Parameters:
(s) file-list a space-delimited list of files

Returns:
(i) always 0

"File-list" is a space-delimited list of files, which may not contain wildcards.    The path is
searched if the file is not found in current directory and if the directory is not specified in
"file-list".

    This example in plain text:

FileTimeTouch("wac.c wac.rc")

Run("make.exe", "-fwac.mak")

See Also:
FileAttrSet, FileTimeGet

;FileTimeTouch

FileTimeTouch("wac.c wac.rc")

Run("make.exe", "-fwac.mak")

IsMenuChecked (Command Post program Only)

Determines if a menuitem has a checkmark next to it.

Syntax:
IsMenuChecked (menuname)

Parameters:
"menuname" = name of the menu item to test.

Returns:
(integer) @YES if the menuitem has a checkmark;

@NO if it doesn't.

You can place a checkmark next to a menu item with the MenuChange command, to
indicate an option has been enabled.    This function lets you determine if the menu item has
already been checked or not.

    This example in plain text:

;Assume we've defined a "Misc./Prompt Often" menuitem...

Prompt = IsMenuChecked ("MiscPromptOften")

IfPrompt = strsub(";",1,(Prompt==@FALSE))

execute %IfPrompt% Confirm = AskYesNo ("???", "Do you REALLY

want to do this?")

execute %IfPrompt% Terminate (Confirm!=@YES, "", "")

;some risky operation the user has just confirmed they want

;to carry out...

See Also:
IsMenuEnabled, MenuChange

;MenuChecked

;Assume we've defined a "Misc./Prompt Often" menuitem...

Prompt = IsMenuChecked ("MiscPromptOften")

IfPrompt = strsub(";",1,(Prompt==@FALSE))

execute %IfPrompt% Confirm = AskYesNo ("???", "Do you REALLY want to
do this?")

execute %IfPrompt% Terminate (Confirm!=@YES, "", "")

;some risky operation the user has just confirmed they want

;to carry out...

IsMenuEnabled (Command Post program Only)

Determines if a menuitem has been enabled.

Syntax:
IsMenuEnabled (menuname)

Parameters:
"menuname" = name of the menu item to test.

Returns:
(integer) @YES if the menuitem is enabled;

@NO if it is disabled & grayed.

You can disable a menu item with the MenuChange command if you want to prevent the
user from choosing it.    It shows up on the screen as a grayed item.    IsMenuEnabled lets
you determine if the menu item is currently enabled or not.

    This example in plain text:

;Allow editing of autoexec.bat file only if choice enabled

Terminate (!IsMenuEnabled("UtilitiesEditBatFile"), "", "")

Run ("Notepad.exe", "c:\autoexec.bat")

See Also:
IsMenuChecked, MenuChange

;IsMenuEnabled

;Allow editing of autoexec.bat file only if choice enabled

Terminate (!IsMenuEnabled("UtilitiesEditBatFile"), "", "")

Run ("Notepad.exe", "c:\autoexec.bat")

FileWrite

Writes data to a file.

Syntax:
FileWrite(filehandle, output-data)

Parameters:
filehandle = same integer that was returned by FileOpen.

"output-data" = data to write to file.

Returns:
(integer) always 0.

    This example in plain text:

handle = FileOpen("stuff.txt", "WRITE")

FileWrite(handle, "Gobbledygook")

FileClose(handle)

See Also:
FileOpen, FileClose, FileRead

;FileWrite

handle = FileOpen("stuff.txt", "WRITE")

FileWrite(handle, "Gobbledygook")

FileClose(handle)

Goto

Changes the flow of control in a batch file.

Syntax:
Goto label

Parameters:
"label" = user-defined identifier.

Goto label causes an unconditional branch to the batch file line marked :label, where the
identifier is preceded by a colon (:).

    This example in plain text:

If WinExist("Solitaire") == @FALSE Then Goto open

WinActivate("Solitaire")

Goto loaded

:open

Run("sol.exe", "")

:loaded

See Also:
If...Then

;Goto

If WinExist("Solitaire") == @FALSE Then Goto open

WinActivate("Solitaire")

Goto loaded

:open

Run("sol.exe", "")

:loaded

IconArrange

Rearranges icons.

Syntax:
IconArrange ()

Parameters:
(none)

Returns:
(i) always 0.

This function rearranges the icons at the bottom of the screen, spacing them evenly.    It does
not change the order in which the icons appear.

    This example in plain text:

IconArrange ()

See Also:
RunIcon, WinIconize, WinPlaceSet

;IconArrange

IconArrange ()

If...Then

Conditionally performs a function.

Syntax:
If condition Then statement

Parameters:
"condition" = an expression to be evaluated.

"statement" = any valid WIL function or command.

If the condition following the If keyword is true, the statement following the Then keyword is
executed.    If the condition following the If keyword is false, the statement following the
Then keyword is ignored.

    This example in plain text:

sure = AskYesNo("End Session", "Really quit Windows?")

If sure == @YES Then EndSession()

See Also:
Goto

;If      then

sure = AskYesNo("End Session", "Really quit Windows?")

If sure == @YES Then EndSession()

IgnoreInput

Turns off hardware input to windows.

Syntax:
IgnoreInput(mode)

Parameters:
mode = @TRUE or @FALSE.

Returns:
(integer) previous IgnoreInput mode.

IgnoreInput causes mouse movements, clicks and keyboard entry to be completely
ignored.    Good for self-running demos.
Warning: If you are not careful with the use of IgnoreInput, you can lock up your
computer!

    This example in plain text:

username = AskLine("Hello", "Please enter your name","")

IgnoreInput(@TRUE)

Call("demo.wbt", username)

IgnoreInput(@FALSE)

;IgnoreInput

username = AskLine("Hello", "Please enter your name","")

IgnoreInput(@TRUE)

Call("demo.wbt", username)

IgnoreInput(@FALSE)

IniDelete

Removes a line or section from WIN.INI.

Syntax:
IniDelete (section, keyname)

Parameters:
(s) section the major heading under which the item is located.

(s) keyname the name of the item to delete.

Returns:
(i) always 0

This function will remove the specified line from the specified section in WIN.INI.    You can
remove an entire section, instead of just a single line, by specifying a keyword of
@WHOLESECTION.    Case is not significant in section or keyname.

    This example in plain text:

IniDelete("Desktop", "Wallpaper")

IniDelete("Quicken",@WHOLESECTION)

See Also:
IniDeletePvt, IniItemize, IniRead, IniWrite

;IniDelete

IniDelete("Desktop", "Wallpaper")

IniDelete("Quicken",@WHOLESECTION)

IniDeletePvt

Removes a line or section from a private INI file.

Syntax:
IniDeletePvt (section, keyname, filename)

Parameters:
(s) section the major heading under which the item is located.

(s) keyname the name of the item to delete.

(s) filename name of the INI file.

Returns:
(i) always 0.

This function will remove the specified line from the specified section in a private INI file.   
You can remove an entire section, instead of just a single line, by specifying a keyword of
@WHOLESECTION.    Case is not significant in section or keyname.

    This example in plain text:

IniDeletePvt("Current Users", "Excel", "meter.ini")

See Also:
IniDelete, IniItemizePvt, IniReadPvt, IniWritePvt

;IniDeletePvt

IniDeletePvt("Current Users", "Excel", "meter.ini")

IniItemize

Lists keywords or sections in WIN.INI.

Syntax:
IniItemize (section)

Parameters:
(s) section the major heading to itemize.

Returns:
(s) list of keywords or sections.

IniItemize will scan the specified section in WIN.INI, and return a space-delimited list of all
keyword names contained within that section.    If a null string ("") is given as the section
name, IniItemize will return a list of all section names contained within WIN.INI.    Case is
not significant in section names.

   

; Returns all keywords in the [Extensions] section

keywords = IniItemize("Extensions")

; Returns all sections in the entire WIN.INI file

sections = IniItemize("")

See Also:
IniDelete, IniItemizePvt, IniRead, IniWrite

IniItemizePvt

Lists keywords or sections in a private INI file.

Syntax:
IniItemizePvt (section, filename)

Parameters:
(s) section the major heading to itemize.

(s) filename name of the INI file.

Returns:
(s) list of keywords or sections.

IniItemizePvt will scan the specified section in a private INI file, and return a space-
delimited list of all keyword names contained within that section.    If a null string ("") is given
as the section name, IniItemizePvt will return a list of all section names contained within
the file.    Case is not significant in section names.

    This example in plain text:

; Returns all keywords in the [Boot] section of SYSTEM.INI

keywords = IniItemizePvt("Boot", "system.ini")

See Also:
IniDeletePvt, IniItemize, IniReadPvt, IniWritePvt

;IniItemize

; Returns all keywords in the [Boot] section of SYSTEM.INI

keywords = IniItemizePvt("Boot", "system.ini")

IniRead

Reads data from the WIN.INI file.

Syntax:
IniRead (section, keyname, default)

Parameters:
"section" = the major heading to read the data from.

"keyname = the name of the item to read.

"default" = string to return if the desired item is not found.

Returns:
(string) data from WIN.INI file.

This function allows a program to read data from the WIN.INI file.
The WIN.INI file has the form:

[section]

keyname=settings

Most of the entries in WIN.INI are set from the Windows Control Panel program, but
individual applications can also use it to store option settings in their own sections.

    This example in plain text:

; Find the default output device

a = IniRead("windows", "device", "No Default")

Message("Default Output Device", a)

See Also:
IniWrite, IniReadPvt, IniWritePvt, Environment

;IniRead

; Find the default output device

a = IniRead("windows", "device", "No Default")

Message("Default Output Device", a)

IniReadPvt

Reads data from a private INI file.

Syntax:
IniReadPvt (section, keyname, default, filename)

Parameters:
"section" = the major heading to read the data from.

"keyname = the name of the item to read.

"default" = string to return if the desired item is not found.

"filename" = name of the INI file.

Returns:
(string) data from the INI file.

Looks up a value in the "filename".INI file.    If the value is not found, the "default" will be
returned.

    This example in plain text:

IniReadPvt("Main", "Lang", "English", "WB.INI")

Given the following segment from WB.INI:
[Main]
Lang=French

The batch file line above would return:
French

See Also:
IniWritePvt, IniRead, IniWrite

;IniReadPvt

IniReadPvt("Main", "Lang", "English", "WB.INI")

IniWrite

Writes data to the WIN.INI file.

Syntax:
IniWrite (section, keyname, data)

Parameters:
"section" = major heading to write the data to.

"keyname = name of the data item to write.

"data" = string to write to the WIN.INI file.

Returns:
(integer) always @TRUE.

This command allows a program to write data to the WIN.INI file.    The "section" is added to
the file if it doesn't already exist.

    This example in plain text:

; Change the list of pgms to load upon Windows

; startup

loadprogs = IniRead("windows", "load", "")

newprogs = AskLine("Add Pgm To LOAD= Line", "Add:", loadprogs)

IniWrite("windows", "load", newprogs)

See Also:
IniRead, IniReadPvt, IniWritePvt

;IniWrite

; Change the list of pgms to load upon Windows

; startup

loadprogs = IniRead("windows", "load", "")

newprogs = AskLine("Add Pgm To LOAD= Line", "Add:", loadprogs)

IniWrite("windows", "load", newprogs)

IniWritePvt

Writes data to a private INI file.

Syntax:
IniWritePvt (section, keyname, data, filename)

Parameters:
"section" = major heading to write the data to.

"keyname = name of the data item to write.

"data" = string to write to the INI file.

"filename" = name of the INI file.

Writes a value in the "filename".INI file.

    This example in plain text:

IniWritePvt("Main", "Lang", "French, "WB.INI")

This would create the following entry in WB.INI:
[Main]
Lang=French

See Also:
IniReadPvt, IniRead, IniWrite

;IniWritePvt

IniWritePvt("Main", "Lang", "French, "WB.INI")

IntControl

Internal control functions.

Syntax:
IntControl (request#, p1, p2, p3, p4)

Parameters:
(i) request# specifies which sub-function is to be performed (see below).

(s) p1 - p4 parameters which may be required by the function (see below).

Returns:
(s) varies (see below).

Short for Internal Control, a special function that permits numerous internal operations in the
CP and WB products.    The first parameter of IntControl defines exactly what the function
does, the other parameters are possible arguments to the function.
Warning: Many of these operations are useful only under special circumstances, and/or by
technically knowledgeable users.    Some could lead to adverse side effects.    If it isn't clear
to you what a particular function does, don't use it.

IntControl (1, p1, 0, 0, 0)
Just a test IntControl.    It echoes back P1 & P2 and P3 & P4 in a pair of message boxes.

IntControl (2, 0, 0, 0, 0) (CP only)
Returns the number of Command Post program windows currently open.

IntControl (3, 0, 0, 0, 0) (CP only)
Writes the positions of each open Command Post window to the WWW-PROD.INI file, using
the WinPositionXY format.

IntControl (4, p1, 0, 0, 0)
Controls whether or not a dialog box with a file listbox in it has to return a file name, or may
return merely a directory name or nothing.

P1 Meaning

0 May return nothing, or just a directory name

1 Must return a file name (default)

IntControl (5, p1, 0, 0, 0)
Controls whether system & hidden files are seen and processed.

P1 Meaning

0 System & Hidden files not used (default)

1 System & Hidden files seen and used

IntControl (6, 0, 0, 0, 0) (CP only)
Positions all open Command Post windows, based on the information in the WWW-PROD.INI
file.

IntControl (8, 0, 0, 0, 0) (CP only)
Reloads Command Post menus, just like selecting "Reload Menu" from the system menu.

IntControl (9, p1, 0, 0, 0) (CP only)
Controls Command Post window resizing.

P1 Meaning

0 Resize automagically on open and close (default)

1 disable resize on window close

2 disable resize on window open

3 disable resize on open and close

IntControl (10, p1, 0, 0, 0)
Interrogates the Command Extender DLL status

P1 Meaning

0 Command Extender present

0 No

1 Yes

1 Command Extender version

-1 No Extender present

0 Incompatible extender present

(other) Extender version code

2 Interpreter's Extender interface code

3 Name of Extender DLL

IntControl (11, p1, 0, 0, 0) (CP only)
Used to tell Command Post that it is (or is not) a shell, contrary to what it really is.    That is,
if it is really a shell, you can disable the shell-like characteristics, or if it is not a shell, enable
its shell characteristics.

P1 Meaning

0 Play standard app

1 Play shell

IntControl (12, p1, 0, 0, 0) (WB only)

Used to direct WinBatch to allow itself to be terminated without warning when Windows
shuts down and a batch file is still running

P1 Meaning

0 WinBatch complains on shutdown (default)

1 WinBatch will terminate quietly

IntControl (15, 0, 0, 0, 0) (WB only)
Returns currently executing WBT file name; the same as the "paramfile" variable.

IntControl (18, 0, 0, 0, 0)
Suspends the program (WB or CP) waiting for some other process to do the equivalent of
IntControl(19).    This command will hang your system if used improperly.

IntControl (19, p1, 0, 0, 0)
Un-suspends a process stopped with IntControl(18).    P1 is a window handle (not a window
title).    Windows handles may be derived from window titles using IntControl(21).

IntControl (20, 0, 0, 0, 0)
Returns window handle of current Command Post or WinBatch window.

IntControl (21, p1, 0, 0, 0)
Returns window handle of window matching the partial window-name in p1.

IntControl (22, p1, p2, p3, p4)
Issues a Windows "SendMessage".

p1 Window handle to send to

p2 Message ID number (in decimal)

p3 wParam value

p4 assumed to be a character string.    String is copied to a GMEM_LOWER
buffer, and a LPSTR to the copied string is passed as lParam. The GMEM_LOWER
buffer is freed immediately upon return from the SendMessage

IntControl (23, 0, 0, 0, 0)
Issues a windows PostMessage

p1 Window handle

p2 Message ID number (in decimal)

p3 wParam

p4 lParam -- assumed to be numeric

IntControl (66, 0, 0, 0, 0)
Restarts Windows, just like exiting to DOS and typing WIN again.    Could be used to restart
Windows after editing the SYSTEM.INI file to change video modes.

IntControl (67, 0, 0, 0, 0)

Performs a warm boot of the system, just like <Ctrl-Alt-Del>.    Could be used to reboot the
system after editing the AUTOEXEC.BAT or CONFIG.SYS files.
Note: IntControl(67) works only in Windows 3.1 or higher.    In Windows 3.0, it behaves just
like IntControl(66) and restarts Windows.

IsDefined

Determines if a variable name is currently defined.

Syntax:
IsDefined (var)

Parameters:
"var" = a variable name.

Returns:
(integer) @YES if the variable is currently defined;

@NO if it was never defined or has been dropped.

A variable is defined the first time it appears at the left of an equal sign in a statement.    It
stays defined until it is explicitly dropped with the Drop function, or until the batch file ends.

    This example in plain text:

def = IsDefined(thisvar)

If def == @FALSE Then Message("ERROR!", "Variable not defined")

See Also:
Drop

;IsDefined

def = IsDefined(thisvar)

If def == @FALSE Then Message("ERROR!", "Variable not defined")

IsKeyDown

Tells about keys/mouse.

Syntax:
IsKeyDown(keycodes)

Parameters:
keycodes = @SHIFT and/or @CTRL

Returns:
(integer) @YES if the key is down.

@NO if the key is not down.

Determines if the Shift key or the Ctrl key is currently down.
Note: The right mouse button is the same as Shift, and the middle mouse button is the
same as Ctrl.

    This example in plain text:

IsKeyDown(@SHIFT)

IsKeyDown(@CTRL)

IsKeyDown(@CTRL | @SHIFT)

IsKeyDown(@CTRL & @SHIFT)

;IsKeyDown

IsKeyDown(@SHIFT)

IsKeyDown(@CTRL)

IsKeyDown(@CTRL | @SHIFT)

IsKeyDown(@CTRL & @SHIFT)

IsLicensed

Tells if the WIL interpreter is licensed.

Syntax:
IsLicensed()

Parameters:
(none)

Returns:
(integer) @YES if current version of the WIL interpreter is licensed.

@NO if current version of the WIL interpreter is not licensed.

Returns information on whether or not the current version of the WIL interpreter is a licensed
copy.

 This example in plain text:

IsLicensed

;IsLicensed

IsLicensed

IsNumber

Determines whether a variable contains a valid number.

Syntax:
IsNumber (string)

Parameters:
"string" = string to test to see if it represents a valid number.

Returns:
(integer) @YES if it contains a valid number;

@NO if it doesn't.

This function determines if a string variable contains a valid integer.    Useful for checking
user input prior to using it in computations.

    This example in plain text:

a = AskLine("ISNUMBER", "Enter a number", "0")

If IsNumber(a) == @NO Then Message("", "You didn't enter a number")

See Also:
Abs, Char2Num

IsNumber

a = AskLine("ISNUMBER", "Enter a number", "0")

If IsNumber(a) == @NO Then Message("", "You didn't enter a number")

IsRunning (Command Post program only)

Determines if another copy of Command Post is currently running.

Syntax:
IsRunning ()

Returns:
(integer) @YES if another copy of Command Post is running;

@NO if this is the only one.

There is no artificial restraint on the number of copies of Command Post you may run at
once.

    This example in plain text:

a=!(IsRunning())

Is = strsub("not ", 1, 4*a)

Message("", "Another Command Post is %Is% running.")

Drop(a, Is)

See Also:
OtherDir, OtherUpdate

;IsRunning

a=!(IsRunning())

Is = strsub("not ", 1, 4*a)

Message("", "Another Command Post is %Is% running.")

Drop(a, Is)

ItemCount

Returns the number of items in a list.

Syntax:
ItemCount (list, delimiter)

Parameters:
"list" = a string containing a list of items to choose from.

"delimiter" = a string containing the character to act as delimiter between items in
the list.

Returns:
(integer) the number of items in the list.

If you create the list with the FileItemize or DirItemize functions you will be using a space-
delimited list.    WinItemize, however, creates a tab-delimited list of window titles since
titles can have embedded blanks.

    This example in plain text:

a = FileItemize("*.*")

n = ItemCount(a, " ")

Message("Note", "There are %n% files")

See Also:
DirItemize, FileItemize, WinItemize, ItemExtract, ItemSelect

;ItemCount

a = FileItemize("*.*")

n = ItemCount(a, " ")

Message("Note", "There are %n% files")

ItemExtract

Returns the selected item from a list.

Syntax:
ItemExtract (select, list, delimiter)

Parameters:
select = the position in "list" of the item to be selected.

"list" = a string containing a list of items to choose from.

"delimiter" = a string containing the character to act as delimiter between items in
the list.

Returns:
(string) the selected item.

If you create the list with the FileItemize or DirItemize functions you will be using a space-
delimited list.    WinItemize, however, creates a tab-delimited list of window titles since
titles can have embedded blanks.

    This example in plain text:

bmpfiles = FileItemize("*.bmp")

bmpcount = ItemCount(bmpfiles, " ")

pos = (Random(bmpcount - 1)) + 1

paper = ItemExtract(pos, bmpfiles, " ")

Wallpaper(paper, @FALSE)

See Also:
DirItemize, FileItemize, WinItemize, ItemCount, ItemSelect

;ItemExtract

bmpfiles = FileItemize("*.bmp")

bmpcount = ItemCount(bmpfiles, " ")

pos = (Random(bmpcount - 1)) + 1

paper = ItemExtract(pos, bmpfiles, " ")

Wallpaper(paper, @FALSE)

ItemSelect

Allows the user to choose an item from a listbox.

Syntax:
ItemSelect (title, list, delimiter)

Parameters:
"title" = the title of dialog box to display.

"list" = a string containing a list of items to choose from.

"delimiter" = a string containing the character to act as delimiter between items in
the list.

Returns:
(string) the selected item.

This function displays a dialog box with a listbox inside.    This listbox is filled with a sorted
list of items taken from a string you provide to the function.
Each item in the string must be separated ("delimited") by a character, which you also pass
to the function.
The user selects one of the items by either doubleclicking on it, or single-clicking and
pressing OK.    The item is returned as a string.
If you create the list with the FileItemize or DirItemize functions you will be using a space-
delimited list.    WinItemize, however, creates a tab-delimited list of window titles since
titles can have embedded blanks.

    This example in plain text:

DirChange("e:\word")

alldotfiles = FileItemize("*.dot")

dotfile = ItemSelect("W4W Templates", alldotfiles, " ")

Run("winword.exe", dotfile)

Which would produce:

See Also:
AskYesNo, Display,    DirItemize, FileItemize, WinItemize, Message, Pause,
TextBox, ItemCount, ItemExtract

;ItemSelect

DirChange("e:\word")

alldotfiles = FileItemize("*.dot")

dotfile = ItemSelect("W4W Templates", alldotfiles, " ")

Run("winword.exe", dotfile)

LastError

Returns the most-recent error encountered during the current batch file.

Syntax:
LastError ()

Parameters:
(none)

Returns:
(integer) most-recent WIL error code encountered.

WIL errors are numbered according to their severity.    "Minor" errors go from 1000 through
1999.    Moderate errors are 2000 through 2999.    Fatal errors are numbered 3000 to 3999.
Depending on which error mode is active when an error occurs, you may not get a chance to
check the error code.    See ErrorMode for a discussion of default error handling.
Don't bother checking for "fatal" error codes.    When a fatal error occurs, the batch file is
canceled before the next WIL statement gets to execute (regardless of which error mode is
active).
Every time the LastError function is called, the "last error" indicator is reset to zero.
A full listing of possible errors you can encounter in processing a batch file is in Appendix B
(pg.).

    This example in plain text:

ErrorMode(@OFF)

FileCopy("data.dat", "c:\backups", @FALSE)

ErrorMode(@CANCEL)

If LastError() == 1006 Then Message("Error", "Please call Tech Support at 555-9999.")

See Also:
Debug, ErrorMode

;LastError

ErrorMode(@OFF)

FileCopy("data.dat", "c:\backups", @FALSE)

ErrorMode(@CANCEL)

If LastError() == 1006 Then Message("Error", "Please call Tech Support at 555-9999.")

LogDisk

Logs (activates) a disk drive.

Syntax:
LogDisk (drive-letter)

Parameters:
"drive-letter" = the disk drive to log into.

Returns:
(integer) @TRUE if the current drive was changed;

@FALSE if the drive doesn't exist.

Use this function to change the logged disk drive.
This command produces the same effect as if you typed the drive name from the DOS
command prompt.

    This example in plain text:

LogDisk("c:")

See Also:
DirChange

;LogDisk

LogDisk("c:")

Max

Returns largest number in a list of numbers.

Syntax:
Max (integer [, integer]...)

Parameters:
integer =an integer number.

Returns:
(integer) largest parameter.

Use this function to determine the largest of a set of comma-delimited integers.

    This example in plain text:

a = Max(5, -37, 125, 34, 2345, -32767)

Message("Largest number is", a)

See Also:
Abs, Average, Min

Max

a = Max(5, -37, 125, 34, 2345, -32767)

Message("Largest number is", a)

MenuChange (Command Post program only)

Checks, unchecks, enables, or disables a menu item.

Syntax:
MenuChange (menuname, flags)

Parameters:
"menuname" = menu item whose status you wish to change.

"flags" = @CHECK, @UNCHECK,

@ENABLE, or @DISABLE.

Returns:
(integer) always @TRUE.

There are currently two ways you can modify a menu item:
You can check and uncheck the item to imply that it corresponds to an option that can be
turned on or off.
You can temporarily disable the item (it shows up as gray) and later re-enable it.
The two sets of flags (@Check/@UnCheck and @Enable/@Disable) can be combined in
one function call by using the | (or) operator.

    This example in plain text:

MenuChange (FilePrint, @Disable)

MenuChange (WPWrite, @Enable|@Check)

See Also:
IsMenuChecked, IsMenuEnabled

;MenuChange

MenuChange (FilePrint, @Disable)

MenuChange (WPWrite, @Enable|@Check)

Message

Displays a message to the user.

Syntax:
Message (title, text)

Parameters:
"title" = title of the message box.

"text" = text to display in the message box.

Returns:
(integer) always @TRUE.

Use this function to display a message to the user.    The user must respond by selecting the
OK button before processing will continue.

    This example in plain text:

Message("Current directory is", DirGet())

which produces:

See Also:
Display, Pause

;Message

Message("Current directory is", DirGet())

which produces:

Min

Returns lowest number in a list of numbers.

Syntax:
Min (integer [, integer]...)

Parameters:
integer =an integer number.

Returns:
(integer) lowest parameter.

Use this function to determine the lowest of a set of comma-delimited integers.

    This example in plain text:

a = Min(5, -37, 125, 34, 2345, -32767)

Message("Smallest number is", a)

See Also:
Abs, Average, Max

;Min

a = Min(5, -37, 125, 34, 2345, -32767)

Message("Smallest number is", a)

MouseInfo

Returns assorted mouse information.

Syntax:
MouseInfo (request#)

Parameters:
(i) request# see below.

Returns:
(s) see below.

The information returned by MouseInfo depends on the value of request#.
Req# Return value

0 Window name under mouse

1 Top level parent window name under mouse

2 Mouse coordinates, assuming a 1000x1000 virtual screen

3 Mouse coordinates in absolute numbers

4 Status of mouse buttons, as a bitmask:

Binary Decimal Meaning

000 0 No buttons down

001 1 Right button down

010 2 Middle button down

011 3 Right and Middle buttons down

100 4 Left button down

101 5 Left and Right buttons down

110 6 Left and Middle buttons down

111 7 Left, Middle, and Right buttons down

For example, if mouse is at the center of a 640x480 screen and above the "Clock" window,
and the left button is down, the following values would be returned:

Req# Return value

1 "Clock"

2 "500 500"

3 "320 240"

4 "4"

    This example in plain text:

Display(1, "", "Press a mouse button to continue")

:loop

buttons = MouseInfo(4)

If buttons == 0 Then Goto loop

If buttons & 4 Then Display(1, "", "Left button was pressed")

If buttons & 1 Then Display(1, "", "Right button was pressed")

See Also:
WinMetrics, WinParmGet

;MouseInfo

Display(1, "", "Press a mouse button to continue")

:loop

buttons = MouseInfo(4)

If buttons == 0 Then Goto loop

If buttons & 4 Then Display(1, "", "Left button was pressed")

If buttons & 1 Then Display(1, "", "Right button was pressed")

NetAddCon

Connects network resources to imaginary local disk drives or printer ports.

Syntax:
NetAddCon (net-path, password, local-name)

Parameters:
(s) net-path net resource or string returned by x.

(s) password password required to access resource, or "".

(s) local-name local drive name or printer port.

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

You can use NetAddCon to connect a local drive to a network directory, in which case
"local-name" will be a drive name (eg, "Z:").    You can also connect a local printer port to a
network print queue, in which case "local-name" will be the name of the printer port (eg,
"LPT1").
Use the NetBrowse function to obtain a value for "net-path".
If no password is required, use a null string ("") for the "password" parameter.

    This example in plain text:

availdrive = DiskScan(0)

drvlen = StrLen(availdrive)

If drvlen == 0 Then Goto nomore

availdrive = StrSub(availdrive, drvlen - 2, 2)

netpath = NetBrowse(0)

pswd = AskPassword("Enter password for", netpath)

NetAddCon(netpath, pswd, availdrive)

Exit

:nomore

Message("Connect Drive to Net", "No drives avail for assignment")

See Also:
NetBrowse, NetCancelCon, NetGetCon

;NetAddCon

availdrive = DiskScan(0)

drvlen = StrLen(availdrive)

If drvlen == 0 Then Goto nomore

availdrive = StrSub(availdrive, drvlen - 2, 2)

netpath = NetBrowse(0)

pswd = AskPassword("Enter password for", netpath)

NetAddCon(netpath, pswd, availdrive)

Exit

:nomore

Message("Connect Drive to Net", "No drives avail for assignment")

NetBrowse

Displays a dialog box allowing the user to select a network resource.

Syntax:
NetBrowse (request#)

Parameters:
(i) request# see below.

Returns:
(s) see below.

Displays a dialog box allowing the user to select a network resource. Request#=0 allows
selection of a print queue and Request#=1 allows selection of a network directory.    This
function returns a string that can be used by NetAddCon to add a connection.

    This example in plain text:

availdrive = DiskScan(0)

drvlen = StrLen(availdrive)

If drvlen == 0 Then Goto nomore

availdrive = StrSub(availdrive, drvlen - 2, 2)

netpath = NetBrowse(0)

pswd = AskPassword("Enter password for", netpath)

NetAddCon(netpath, pswd, availdrive)

Exit

:nomore

Message("Connect Drive to Net", "No drives avail for assignment")

See Also:
NetAddCon

;NetBrowse

availdrive = DiskScan(0)

drvlen = StrLen(availdrive)

If drvlen == 0 Then Goto nomore

availdrive = StrSub(availdrive, drvlen - 2, 2)

netpath = NetBrowse(0)

pswd = AskPassword("Enter password for", netpath)

NetAddCon(netpath, pswd, availdrive)

Exit

:nomore

Message("Connect Drive to Net", "No drives avail for assignment")

NetCancelCon

Breaks a network connection.

Syntax:
NetCancelCon (name, force)

Parameters:
(s) name network resource name or local name.

(i) force force flag (see below).

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

If "force" is set to 0, NetCancelCon will not break the connection if any files on that
connection are still open.    If "force" is set to 1, the connection will be broken regardless.

availdrive = DiskScan(4)

n = ItemCount(availdrive, " ")This example in plain text:

If n == 0 Then Exit

i = 1

dislist = ""

:loop

drv = ItemExtract(i, availdrive, " ")

dislist = StrCat(drv, Num2Char(9), NetGetCon(drv), "|")

i = i + 1

If i < n Then Goto loop

availdrive = ItemSelect("Disconnect", dislist, "|")

NetCancelCon(availdrive, 0)

See Also:
NetAddCon, NetGetCon

;NetCancelCon

availdrive = DiskScan(4)

n = ItemCount(availdrive, " ")

If n == 0 Then Exit

i = 1

dislist = ""

:loop

drv = ItemExtract(i, availdrive, " ")

dislist = StrCat(drv, Num2Char(9), NetGetCon(drv), "|")

i = i + 1

If i < n Then Goto loop

availdrive = ItemSelect("Disconnect", dislist, "|")

NetCancelCon(availdrive, 0)

NetDialog

Brings up the network driver's dialog box.

Syntax:
NetDialog ()

Parameters:
(none)

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

A network driver's dialog box displays copyright information, and may allow access to the
network, depending on the particular network driver.    The WIL program will wait until the
network dialog terminates before continuing.

    This example in plain text:

NetDialog()

DiskUpdate()

See Also:
DiskReset, DiskUpdate

;NetDialog

NetDialog()

DiskUpdate()

NetGetCaps

Returns information on network capabilities.

Syntax:
NetGetCaps (request#)

Parameters:
(i) request# see below.

Returns:
(i) see below.

NetGetCaps returns 0 if no network is installed (it is the only network function you can use
without having a network installed and not get an error).

Req# Return value

1 Network driver specification number

2 Type of network installed:

0 None

256 MS Network

512 Lan Manager

768 Novell NetWare

1024 Banyan Vines

1280 10 Net

(other) Other network

3 Network driver version number

4 Returns 1 if any network is installed

6 Bitmask indicating whether the network driver supports the following

connect functions:

1 AddConnection

2 CancelConnection

4 GetConnection

8 AutoConnect via DOS

16 BrowseDialog

7 Bitmask indicating whether the network driver supports the following

print functions:

2 Open Print Job

4 Close Print Job

16 Hold Print Job

32 Release Print Job

64 Cancel Print Job

128 Set number of copies

256 Watch Print Queue

512 Unwatch Print Queue

1024 Lock Queue Data

2048 Unlock Queue Data

4096 Driver will send QueueChanged messages to Print Manager

8192 Abort Print Job

    This example in plain text:

caps = NetGetCaps(6)

If caps & 16 Then Message("", "Your network supports BrowseDialog")

See Also:
NetGetUser, WinConfig, WinMetrics, WinParmGet

;NetGetCaps

caps = NetGetCaps(6)

If caps & 16 Then Message("", "Your network supports BrowseDialog")

NetGetCon

Returns the name of a connected network resource.

Syntax:
NetGetCon (local-name)

Parameters:
(s) local-name local drive name or printer port.

Returns:
(s) name of network resource.

NetGetCon returns the name of the network resource currently connected to "local-name".

    This example in plain text:

local = AskLine("NetGetCon", "Enter local drive name", "")

If local == "" Then Exit

resource = NetGetCon(local)

Message("NetGetCon", "%local% is connected to %resource%")

See Also:
NetAddCon, NetCancelCon

;NetGetCon

local = AskLine("NetGetCon", "Enter local drive name", "")

If local == "" Then Exit

resource = NetGetCon(local)

Message("NetGetCon", "%local% is connected to %resource%")

NetGetUser

Returns the name of the user currently logged into the network.

Syntax:
NetGetUser ()

Parameters:
(none)

Returns:
(s) name of current user.

    This example in plain text:

IniWritePvt("Current Users", "Excel", NetGetUser(), "usagelog.ini")

Run("excel.exe", "")

See Also:
NetGetCaps

;NetGetUser

IniWritePvt("Current Users", "Excel", NetGetUser(), "usagelog.ini")

Run("excel.exe", "")

Num2Char

Converts a number to its character equivalent.

Syntax:
Num2Char (integer)

Parameters:
number = any number from 0 to 255.

Returns:
(string) one-byte string containing the character the number represents.

Use this function to convert a number to its ASCII equivalent.

    This example in plain text:

; Build a variable containing a CRLF combo

crlf = StrCat(Num2Char(13), Num2Char(10))

Message("NUM2CHAR", StrCat("line1", crlf, "line2"))

See Also:
Char2Num

Num2Char

; Build a variable containing a CRLF combo

crlf = StrCat(Num2Char(13), Num2Char(10))

Message("NUM2CHAR", StrCat("line1", crlf, "line2"))

OtherDir (Command Post program only)

Finds the directory where the other copy of Command Post is running, if any.

Syntax:
OtherDir ()

Parameters:
"string" = pathname to "other" directory.

Returns:
(string) the directory of the second-most recently used Command Post window.    The
current window is considered the most recently used directory.

Use this command to determine directory of the other Command Post window.    Useful in
setting up copy and move operations between two Command Post copies.

    This example in plain text:

a=DirGet()

b=OtherDir()

Message("Directory of this CmdPost window is",a)

Message("Directory of the other CmdPost window is",b)

See Also:
DirGet, DirHome, OtherUpdate

;OtherDir

a=DirGet()

b=OtherDir()

Message("Directory of this CmdPost window is",a)

Message("Directory of the other CmdPost window is",b)

OtherUpdate (Command Post program only)

Updates another Command Post directory display.

Syntax:
OtherUpdate ()

Returns:
(integer) @TRUE if another copy of Command Post was found to update;

@FALSE if this is the only copy running.

This command updates the File Manager display of the next-most recently invoked copy of
Command Post.    This is useful if your menu item changes a directory; i.e. if a file or
directory is created, moved, renamed, or deleted.    OtherUpdate helps ensure the other
Command Post display immediately reflects the change the user caused from this copy.

    This example in plain text:

FileCopy ("MyFile.txt", OtherDir(), @FALSE)

OtherUpdate ()

See Also:
OtherDir, SetDisplay

;OtherUpdate

FileCopy ("MyFile.txt", OtherDir(), @FALSE)

OtherUpdate ()

ParseData (WB)

Parses the passed string, just like passed parameters are parsed.

Syntax:
ParseData (string)

Parameters:
"string" = string to be parsed.

Returns:
(integer) number of parameters in "string".

This function breaks a string constant or string variable into new sub-string variables named
param1, param2, etc. (maximum of nine parameters).    Blank spaces in the original string
are used as delimiters to create the new variables.
Param0 is the count of how many sub-strings are found in "string".

    This example in plain text:

username = AskLine("Hello", "Please enter your name","")

ParseData(username)

If the user enters:
Joe Q. User

ParseData would create the following variables:
param1 == Joe
param2 == Q.
param3 == User
param0 == 3

;ParseData

username = AskLine("Hello", "Please enter your name","")

ParseData(username)

Pause

Provides a message to user.    User may cancel processing.

Syntax:
Pause (title, text)

Parameters:
"title" = title of pause box.

"text" = text of the message to be displayed.

Returns:
(integer) always @TRUE.

This function displays a message to the user with an exclamation point icon.    The user may
respond by selecting the OK button, or may cancel the processing by selecting Cancel.
The Pause function is similar to the Message function, except for the addition of the
Cancel button and icon.

    This example in plain text:

Pause("Change Disks", "Insert new disk into Drive A:")

which produces:

See Also:
Display, Message

;Pause

Pause("Change Disks", "Insert new disk into Drive A:")

which produces:

PlayMedia

Controls multimedia devices.

Syntax:
PlayMedia (command-string)

Parameters:
(s) command-string string to be sent to the multimedia device.

Returns:
(s) response from the device.

If the appropriate Windows multimedia extensions are present, this function can control
multimedia devices.    Valid command strings depend on the multimedia devices and drivers
installed.    The basic Windows multimedia package has a waveform device to play and
record waveforms, and a sequencer device to play MID files.    Refer to the appropriate
documentation for information on command strings.
Many multimedia devices accept the WAIT or NOTIFY parameters as part of the command
string:

WAIT Causes the system to stop processing input until the requested
operation is complete.    You cannot switch tasks when WAIT is specified.

NOTIFY Causes the WIL program to suspend execution until the requested
operation completes.    You can perform other tasks and switch between tasks
when NOTIFY is specified.

WAIT NOTIFY Same as WAIT

If neither WAIT nor NOTIFY is specified, the multimedia operation is started and control
returns immediately to the WIL program.
In general, if you simply want the WIL program to wait until the multimedia operation is
complete, use the NOTIFY keyword.    If you want the system to hang until the operation is
complete, use WAIT.    If you just want to start a multimedia operation and have the program
continue processing, don't use either keyword.
The return value from PlayMedia is whatever string the driver returns.    This will depend on
the particular driver, as well as on the type of operation performed.

; Plays a music CD on a CDAudio player.    It plays whatever is in the

; drive, from start to finish

stat = PlayMedia("status cdaudio mode")

answer = 1

If stat == "playing" Then answer = AskYesNo("CD Audio", "CD is

Playing.    Stop?")

If answer == 0 Then Exit

PlayMedia("open cdaudio shareable alias donna notify")This example in plain text:

PlayMedia("set donna time format tmsf")

PlayMedia("play donna from 1")

PlayMedia("close donna")

Exit

:cancel

PlayMedia("set cdaudio door open")

See Also:
PlayMidi, PlayWaveForm

;PlayMedia

; Plays a music CD on a CDAudio player.    It plays whatever is in the

; drive, from start to finish

stat = PlayMedia("status cdaudio mode")

answer = 1

If stat == "playing" Then answer = AskYesNo("CD Audio", "CD is

Playing.    Stop?")

If answer == 0 Then Exit

PlayMedia("open cdaudio shareable alias donna notify")

PlayMedia("set donna time format tmsf")

PlayMedia("play donna from 1")

PlayMedia("close donna")

Exit

:cancel

PlayMedia("set cdaudio door open")

PlayMidi

Plays a MID or RMI sound file.

Syntax:
PlayMidi (filename, mode)

Parameters:
(s) filename name of the MID or RMI sound file.

(i) mode play mode (see below).

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and MIDI-compatible hardware is
installed, this function will play a MID or RMI sound file.    If "filename" is not in the current
directory and a directory is not specified, the path will be searched to find the file.
If "mode" is set to 0, the WIL program will wait for the sound file to complete before
continuing.    If "mode" is set to 1, it will start playing the sound file and continue
immediately.

    This example in plain text:

PlayMidi("canyon.mid", 1)

See Also:
PlayMedia, PlayWaveForm

;PlayMidi

PlayMidi("canyon.mid", 1)

PlayWaveForm

Plays a WAV sound file.

Syntax:
PlayWaveForm (filename, mode)

Parameters:
(s) filename

(i) mode play mode (see below).

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and waveform-compatible hardware is
installed, this function will play a WAV sound file.    If "filename" is not in the current directory
and a directory is not specified, the path will be searched to find the file.    If "filename is not
found, the WAV file associated with the "SystemDefault" keyword is played, (unless the
"NoDefault" setting is on).
Instead of specifying an actual filename, you may specify a keyword name from the [Sound]
section of the WIN.INI file (eg, "SystemStart"), in which case the WAV file associated with
that keyword name will be played.   
"Mode" is a bitmask, composed of the following bits:

Mode Meaning

0 Wait for the sound to end before continuing.

1 Don't wait for the sound to end.    Start the sound and immediately process more
statements.

2 If sound file not found, do not play a default sound

9 Continue playing the sound forever, or until a

PlayWaveForm("", 0) statement is executed

16 If another sound is already playing, do not interrupt it.    Just ignore this
PlayWaveForm request.

You can combine these bits using the binary OR operator.
The command PlayWaveForm("", 0) can be used at any time to stop sound.

   

PlayWaveForm("tada.wav", 0)

PlayWaveForm("SystemDefault", 1 | 16)

See Also:
PlayMedia, PlayMidi

Random

Computes a pseudo-random number.

Syntax:
Random (max)

Parameters:
max = largest desired integer number.

Returns:
(integer) unpredictable positive number.

This function will return a random integer between 0 and "max".

    This example in plain text:

a = Random(79)

Message("Random number between 0 and 79", a)

;PlayWaveForm

a = Random(79)

Message("Random number between 0 and 79", a)

Return

Used to return from a Call or a CallExt to the calling program.

Syntax:
Return

If the program was not called, then an Exit is assumed.

    This example in plain text:

Display(2, "End of subroutine", "Returning to MAIN.WBT")

Return

See Also:
Call, CallExt, Exit

;Return

Display(2, "End of subroutine", "Returning to MAIN.WBT")

Return

Run

Runs a program as a normal window.

Syntax:
Run (program-name, parameters)

Parameters:
"program-name" =the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:
(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application.
If the drive and path are not part of the program name, the current directory will be
examined first, and then the DOS path will be searched to find the desired executable file.
If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [extensions] section of the WIN.INI file.    When this
happens, any "parameters" you specified are ignored.

    This example in plain text:

Run("notepad.exe", "abc.txt")

Run("clock.exe", "")

Run("paint.exe", "pict.msp")

See Also:
RunHide, RunIcon, RunZoom, WinClose, WinWaitClose

;Run

Run("notepad.exe", "abc.txt")

Run("clock.exe", "")

Run("paint.exe", "pict.msp")

RunHide

Runs a program as a hidden window.

Syntax:
RunHide (program-name, parameters)

Parameters:
"program-name" =the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:
(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as a hidden window.
If the drive and path are not part of the program name, the current directory will be
examined first, and then the DOS path will be searched to find the desired executable file.
If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [extensions] section of the WIN.INI file.    When this
happens, any "parameters" you specified are ignored.
Note: When this command launches an application, it informs it that you want it to run as a
hidden window.    Whether or not the application honors your wish is beyond RunHide's
control.

    This example in plain text:

RunHide("notepad.exe", "abc.txt")

RunHide("clock.exe", "")

RunHide("paint.exe", "pict.msp")

See Also:
Run, RunIcon, RunZoom, WinHide, WinClose, WinWaitClose

;RunHide

RunHide("notepad.exe", "abc.txt")

RunHide("clock.exe", "")

RunHide("paint.exe", "pict.msp")

RunIcon

Runs a program as an iconic (minimized) window.

Syntax:
RunIcon (program-name, parameters)

Parameters:
"program-name" =the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:
(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as an icon.
If the drive and path are not part of the program name, the current directory will be
examined first, and then the DOS path will be searched to find the desired executable file.
If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [extensions] section of the WIN.INI file.    When this
happens, any "parameters" you specified are ignored.
Note: When this command launches an application, it merely informs it that you want it to
begin as an icon.    Whether or not the application honors your wish is beyond RunIcon's
control.

    This example in plain text:

RunIcon("notepad.exe", "abc.txt")

RunIcon("clock.exe", "")

RunIcon("paint.exe", "pict.msp")

See Also:
Run, RunHide, RunZoom, WinIconize, WinClose, WinWaitClose

;RunIcon

RunIcon("notepad.exe", "abc.txt")

RunIcon("clock.exe", "")

RunIcon("paint.exe", "pict.msp")

RunZoom

Runs a program as a full-screen (maximized) window.

Syntax:
RunZoom (program-name, parameters)

Parameters:
"program-name" =the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:
(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as a full-screen window.
If the drive and path are not part of the program name, the current directory will be
examined first, and then the DOS path will be searched to find the desired executable file.
If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [extensions] section of the WIN.INI file.    When this
happens, any "parameters" you specified are ignored.
Note: When this command launches an application, it merely informs it that you want it to
be maximized to full-screen.    Whether or not the application honors your wish is beyond
RunZoom's control.

    This example in plain text:

RunZoom("notepad.exe", "abc.txt")

RunZoom("clock.exe", "")

RunZoom("paint.exe", "pict.msp")

See Also:
Run, RunHide, RunIcon, WinZoom, WinClose, WinWaitClose

;RunZoom

RunZoom("notepad.exe", "abc.txt")

RunZoom("clock.exe", "")

RunZoom("paint.exe", "pict.msp")

SendKey

Sends keystrokes to the active application.

Syntax:
SendKey (char-string)

Parameters:
"char-string" = string of regular and/or special characters.

Returns:
(integer) always 0

This function is used to send keystrokes to the current window, just as if they had been
entered from the keyboard.    Any alphanumeric character, and most punctuation marks and
other symbols which appear on the keyboard, may be sent simply by placing it in the "char-
string."    In addition, the following special characters, enclosed in "curly" braces, may be
placed in "char-string" to send the corresponding special characters:

KeySendKey equivalent
~ {~}
! {!}
^ {^}
+ {+}
Backspace {BACKSPACE} or {BS}
Break {BREAK}
Clear {CLEAR}
Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER} or ~
Escape {ESCAPE} or {ESC}
F1 through F16 {F1} through {F16}
Help {HELP}
Home {HOME}
Insert {INSERT}
Left Arrow {LEFT}
Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Space {SPACE} or {SP}
Tab {TAB}
Up Arrow {UP}

To enter an Alt, Control, or Shift key combination, precede the desired character with one
or more of the following symbols:

Alt !
Control ^
Shift +

To enter Alt-S:
SendKey("!S")

To enter Ctrl-Shift-F7:
SendKey("^+{F7}")

You may also repeat a key by enclosing it in braces, followed by a space and the total
number of repetitions desired.
To type 20 asterisks:

SendKey("{* 20}")

To move the cursor down 8 lines:
SendKey("{DOWN 8}")

It is possible to use SendKey to send keystrokes to a DOS application, but only if you are
running Windows in 386 Enhanced mode.    You would then transfer the keystrokes to the
DOS application via the Clipboard.    It is only possible to send standard ASCII characters to
DOS applications; you cannot send function key or Alt-key combinations.

    This example in plain text:

; Start Notepad, and use *.* for filenames

Run("notepad.exe", "")

SendKey("!FO*.*~")

; run DOS batch file which starts our editor

Run("edit.bat", "")

; wait 15 seconds for editor to load

Delay(15)

; send string (with carriage return) to the clipboard

crlf = StrCat(Num2Char(13), Num2Char(10))

ClipPut("Hello%crlf%")

; paste contents of clipboard to DOS window

SendKey("!{SP}EP")

See Also:
SKDebug

SendKey

; Start Notepad, and use *.* for filenames

Run("notepad.exe", "")

SendKey("!FO*.*~")

; run DOS batch file which starts our editor

Run("edit.bat", "")

; wait 15 seconds for editor to load

Delay(15)

; send string (with carriage return) to the clipboard

crlf = StrCat(Num2Char(13), Num2Char(10))

ClipPut("Hello%crlf%")

; paste contents of clipboard to DOS window

SendKey("!{SP}EP")

SetDisplay (Command Post program Only)

Controls the display of files in the Command Post File Manager window.

Syntax:
SetDisplay (detail, sort-by, masks)

Parameters:
"detail" = level of detail.    Use "SHORT" or "LONG".

"sort-by" = how to sort the filenames.    Use "NAME", "KIND", "SIZE", "DATE" or
"UNSORTED".

"masks" = list of masks for file display.

Returns:
(integer) @TRUE if valid options were specified;

@FALSE if invalid.

Use this command to change and/or update the file display.
Any of the fields may be null.    If a field is null the previous setting is used.    This command
will alter the file display Parameters:, and then re-read all the files and update the display.
A special form of this command, SETDISPLAY ("","",""), will update the file display without
changing any of the previously set Parameters.

Errors:
2105 "SetDisplay: Display type not SHORT or LONG"
2106 "SetDisplay: Sort Type not NAME, DATE, SIZE, KIND, or UNSORTED"

    This example in plain text:

Windows &SDK

 &Show SDK Development Files

SetDisplay("","","*.ICO *.CUR *.BMP *.DLG *.H")

;SetDisplay

Windows &SDK

 &Show SDK Development Files

SetDisplay("","","*.ICO *.CUR *.BMP *.DLG *.H")

SKDebug

Controls how SendKey works

Syntax:
SKDebug(mode)

Parameters:
mode = @OFF Keystrokes sent to application.    No debug file written.    Default mode.

@ON Keystrokes sent to application.    Debug file written.

@PARSEONLY Keystrokes not sent to application.    Debug file written.

Returns:
(integer) previous SKDebug mode.

This function allows you to direct the keystrokes generated by your SendKey statements to
a disk file in addition to, or instead of, the application window.    Normally, keystrokes are
sent only to the application.    If you specify SKDebug (@ON), keystrokes are sent to a disk
file as well as to the application.    If you specify SKDebug (@PARSEONLY), keystrokes are
sent only to the disk file, and not to the application.    SKDebug (@OFF) returns to the
default mode.
By default, the file which will receive the parsed keystrokes is named C:\@@SKDBUG.TXT.   
You can override this by making an entry in your WIN.INI file, under the heading
[WinBatch]:

[WinBatch]
SKDFile=debug.fil

where debug.fil is the filename, including complete path specification, that you want to
receive the keystrokes.

    This example in plain text:

Run("notepad.exe", "")

SKDebug(@ON)

SendKey("!FO*.*~")

SKDebug(@OFF)

See Also:
SendKey

;SKDebug

Run("notepad.exe", "")

SKDebug(@ON)

SendKey("!FO*.*~")

SKDebug(@OFF)

SnapShot

Takes a snapshot of the screen and pastes it to the clipboard.

Syntax:
SnapShot (request#)

Parameters:
(i) request# see below.

Returns:
(i) always 0.

Req# Meaning

0 Take snapshot of entire screen

1 Take snapshot of client area of parent window of active window

2 Take snapshot of entire area of parent window of active window

3 Take snapshot of client area of active window

4 Take snapshot of entire area of active window

    This example in plain text:

SnapShot(2)

See Also:
ClipPut

;SnapShot

SnapShot(2)

Sounds

Turns sounds on or off.

Syntax:
Sounds (request#)

Parameters:
(i) request# see below.

Returns:
(i) previous Sound setting.

If Windows multimedia sound extensions are present, this function turns sounds made by
the WIL Interpreter on or off.    Specify a request# of 0 to turn sounds off, and a request# of
1 to turn them on.    By default, the WIL Interpreter makes noise.

    This example in plain text:

;to turn sounds off

Sounds(0)

;Sounds

;to turn sounds off

Sounds(0)

StrCat

Concatenates two or more strings.

Syntax:
StrCat (string1, string2[, stringN]...)

Parameters:
"string1", etc = at least two strings you want to "string" together (so to speak).

Returns:
(string) concatenation of the entire list of input strings.

Use this command to stick character strings together, or to format display messages.

    This example in plain text:

user = AskLine("Login", "Your Name:", "")

Message("Login", StrCat("Hi, ", user))

; note that this will do the same:

Message("Login", "Hi, %user%")

See Also:
StrFill, StrFix, StrTrim

;StrCat

user = AskLine("Login", "Your Name:", "")

Message("Login", StrCat("Hi, ", user))

; note that this will do the same:

Message("Login", "Hi, %user%")

StrCmp

Compares two strings.

Syntax:
StrCmp (string1, string2)

Parameters:
"string1", "string2" = strings to compare.

Returns:
(integer) -1, 0, or 1; depending on whether string1 is less than, equal to, or greater than
string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the other
in an ANSI sorting sequence.
Note:    This command has been included for semantic completeness.    The relational
operators >, >=, ==, !=, <=, and < provide the same capability.

    This example in plain text:

a = AskLine("STRCMP", "Enter a test line", "")

b = AskLine("STRCMP", "Enter another test line", "")

c = StrCmp(a, b)

c = c + 1

d = StrSub("less than      equal to        greater than", c * 12, 12)

; Note that above string is grouped into 12-character

; chunks.

; Desired chunk is removed with the StrSub statement.

Message("STRCMP", "%a% is %d% %b%")

See Also:
StriCmp, StrIndex, StrLen, StrScan, StrSub

;StrCmp

a = AskLine("STRCMP", "Enter a test line", "")

b = AskLine("STRCMP", "Enter another test line", "")

c = StrCmp(a, b)

c = c + 1

d = StrSub("less than      equal to        greater than", c * 12, 12)

; Note that above string is grouped into 12-character

; chunks.

; Desired chunk is removed with the StrSub statement.

Message("STRCMP", "%a% is %d% %b%")

StrFill

Creates a string filled with a series of characters.

Syntax:
StrFill (filler, length)

Parameters:
"filler" = a string to be repeated to create the return string.    If the filler string is null,
spaces will be used instead.

length = the length of the desired string.

Returns:
(string) character string.

Use this function to create a string consisting of multiple copies of the filler string
concatenated together.   

    This example in plain text:

Message("My Stars", StrFill("*", 30))

which produces:

See Also:
StrCat,StrFix, StrLen, StrTrim

;StrFill

Message("My Stars", StrFill("*", 30))

StrFix

Pads or truncates a string to a fixed length.

Syntax:
StrFix (base-string, pad-string, length)

Parameters:
"base-string" = string to be adjusted to a fixed length.

"pad-string" = appended to "base-string" if needed to fill out the desired length.    If
"pad-string" is null, spaces are used instead.

length = length of the desired string.

Returns:
(string) fixed size string.

This function "fixes" the length of a string, either by truncating it on the right, or by
appending enough copies of pad-string to achieve the desired length.

    This example in plain text:

a = StrFix("Henry", " ", 15)

b = StrFix("Betty", " ", 15)

c = StrFix("George", " ", 15)

Message("Spaced Names", StrCat(a, b, c))

which produces:

See Also:
StrFill, StrLen, StrTrim

;StrFix

a = StrFix("Henry", " ", 15)

b = StrFix("Betty", " ", 15)

c = StrFix("George", " ", 15)

Message("Spaced Names", StrCat(a, b, c))

StriCmp

Compares two strings without regard to case.

Syntax:
StriCmp (string1, string2)

Parameters:
"string1", "string2" = strings to compare.

Returns:
(integer) -1, 0, or 1; depending on whether string1 is less than, equal to, or greater than
string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the other
in an ANSI sorting sequence, when case is ignored.

    This example in plain text:

a = AskLine("STRICMP", "Enter a test line", "")

b = AskLine("STRICMP", "Enter another test line", "")

c = StriCmp(a, b)

c = c + 1

d = StrSub("less than      equal to        greater than", c * 12, 12)

; Note that above string is grouped into 12-character

; chunks.

; Desired chunk is removed with the StrSub statement.

Message("STRICMP", "%a% is %d% %b%")

See Also:
StrCmp, StrIndex, StrLen, StrScan, StrSub

;StriCmp

a = AskLine("STRICMP", "Enter a test line", "")

b = AskLine("STRICMP", "Enter another test line", "")

c = StriCmp(a, b)

c = c + 1

d = StrSub("less than      equal to        greater than", c * 12, 12)

; Note that above string is grouped into 12-character

; chunks.

; Desired chunk is removed with the StrSub statement.

Message("STRICMP", "%a% is %d% %b%")

StrIndex

Searches a string for a substring.

Syntax:
StrIndex (string, sub-string, start, direction)

Parameters:
"string" = the string to be searched for a substring.

"substring" = the string to look for within the main string.

start = the position in the main string to begin search.    The first character of a string
is position 1.

direction = the search direction.    @FWDSCAN searches forward, while
@BACKSCAN searches backwards.

Returns:
(integer) position of "sub-string" within "string";

0 if not found.

This function searches for a substring within a "target" string.    Starting at the "start"
position, it goes forward or backward depending on the value of the "direction" parameter.   
It stops when it finds the "substring" within the "target" string, and returns its position.
A start position of 0 has special meaning depending on which direction you are scanning.   
For forward searches, zero indicates the search should start at the beginning of the string.   
For reverse searches, zero causes it to start at the end of the string.

    This example in plain text:

instr = AskLine("STRINDEX", "Type a sentence:", "")

start = 1

end = StrIndex(instr, " ", start, @FWDSCAN)

If end == 0 Then Goto error

Message("STRINDEX", StrCat("The first word is: ", StrSub(instr, start, end - 1))

Exit

:error

Message("Sorry...", "No spaces found")

See Also:
StrLen, StrScan, StrSub

;StrIndex

instr = AskLine("STRINDEX", "Type a sentence:", "")

start = 1

end = StrIndex(instr, " ", start, @FWDSCAN)

If end == 0 Then Goto error

Message("STRINDEX", StrCat("The first word is: ", StrSub(instr, start, end - 1))

Exit

:error

Message("Sorry...", "No spaces found")

StrLen

Provides the length of a string.

Syntax:
StrLen (string)

Parameters:
"string" = any text string.

Returns:
(integer) length of string.

Use this command to determine the length of a string variable or expression.

    This example in plain text:

myfile = AskLine("Filename", "File to process:", "")

namlen = StrLen(myfile)

If namlen > 13 Then Message("", "Filename too long!")

See Also:
StrFill, StrFix, StrIndex, StrScan, StrTrim

;StrLen

myfile = AskLine("Filename", "File to process:", "")

namlen = StrLen(myfile)

If namlen > 13 Then Message("", "Filename too long!")

StrLower

Converts a string to lowercase.

Syntax:
StrLower (string)

Parameters:
"string" = any text string.

Returns:
(string) lowercase string.

Use this command to convert a text string to lower case.

    This example in plain text:

a = AskLine("STRLOWER", "Enter text", "")

b = StrLower(a)

Message(a, b)

See Also:
StriCmp, StrUpper

;StrLower

a = AskLine("STRLOWER", "Enter text", "")

b = StrLower(a)

Message(a, b)

StrReplace

Replaces all occurances of a substring with another.

Syntax:
StrReplace (string, old, new)

Parameters:
"string" = string in which to search.

"old" = target substring.

"new" = replacement substring.

Returns:
(string) updated "string" with "old" replaced by "new"

StrReplace scans the "string", searching for occurrences of "old" and replacing each
occurrence with "new".

    This example in plain text:

; Copy all INI files to clipboard

a = FileItemize("*.ini")

crlf = StrCat(Num2Char(13), Num2Char(10))

b = StrReplace(a, " ", crlf)

ClipPut(b)

;StrReplace

; Copy all INI files to clipboard

a = FileItemize("*.ini")

crlf = StrCat(Num2Char(13), Num2Char(10))

b = StrReplace(a, " ", crlf)

ClipPut(b)

StrScan

Searches string for occurrence of delimiters.

Syntax:
StrScan (string, delimiters, start, direction)

Parameters:
"string" = the string that is to be searched.

"delimiters" = a string of delimiters to search for within "string".

start = the position in the main string to begin search.    The first character of a string
is position 1.

direction = the search direction.    @FWDSCAN searches forward, while
@BACKSCAN searches backwards.

Returns:
(integer) position of delimiter in string, or 0 if not found.

This function searches for delimiters within a target "string".    Starting at the "start" position,
it goes forward or backward depending on the value of the "direction" parameter.    It stops
when it finds any one of the characters in the "delimiters" string within the target "string".

    This example in plain text:

thestr = "123,456.789:abc"

start = 1

end = StrScan(thestr, ",.:", start, @FWDSCAN)

If end == 0 Then Goto error

Message("The first parameter", StrSub(thestr, start, end - start + 1))

Exit

:error

Message("Sorry...", "No delimiters found")

See Also:
StrLen, StrSub

;StrScan

thestr = "123,456.789:abc"

start = 1

end = StrScan(thestr, ",.:", start, @FWDSCAN)

If end == 0 Then Goto error

Message("The first parameter", StrSub(thestr, start, end - start + 1))

Exit

:error

Message("Sorry...", "No delimiters found")

StrSub

Extracts a substring out of an existing string.

Syntax:
StrSub (string, start, length)

Parameters:
"string" = the string from which the substring is to be extracted.

start = character position within "string" where the sub-string starts.    (The first
character of the string is at position 1).

length = length of desired substring.    If you specify a length of zero it will return a null
string.

Returns:
(string) substring of parameter string.

This function extracts a substring from within a "target" string.    Starting at the "start"
position, it copies up to "length" characters into the substring.

    This example in plain text:

a = "My dog has fleas"

animal = StrSub(a, 4, 3)

Message("STRSUB", "My animal is a %animal%")

See Also:
StrLen, StrScan

;StrSub

a = "My dog has fleas"

animal = StrSub(a, 4, 3)

Message("STRSUB", "My animal is a %animal%")

StrTrim

Removes leading and trailing spaces from a character string.

Syntax:
StrTrim (string)

Parameters:
"string" = a string with unwanted spaces at the beginning and/or the end.

Returns:
(string) string devoid of leading and trailing spaces.

Use this function to remove unwanted spaces from the beginning and end of text data.

    This example in plain text:

myfile = AskLine("STRTRIM", "Filename ('exit' cancels)", "")

tstexit = StrTrim(StrLower(myfile))

If tstexit == "exit" Then Goto cancel

; processing of myfile continues...

: cancel

Message("Canceled", "...by user request")

See Also:
StrFill, StrFix, StrLen

;StrTrim

myfile = AskLine("STRTRIM", "Filename ('exit' cancels)", "")

tstexit = StrTrim(StrLower(myfile))

If tstexit == "exit" Then Goto cancel

; processing of myfile continues...

: cancel

Message("Canceled", "...by user request")

StrUpper

Converts a string to uppercase.

Syntax:

StrUpper (string)

Parameters:
"string" = any text string.

Returns:
(string) uppercase string.

Use this function to convert a text string to upper case.

    This example in plain text:

a = AskLine("STRUPPER", "Enter text","")

b = StrUpper(a)

Message(a, b)

See Also:
StriCmp, StrLower

;StrUpper

a = AskLine("STRUPPER", "Enter text","")

b = StrUpper(a)

Message(a, b)

Terminate

Conditionally ends the procedure.

Syntax:
Terminate (expression, title, message)

Parameters:
"expression" = any logical expression

"title" = the title of a message box to be displayed before termination

"message" = the message in the message box

Returns:
(integer) always @TRUE

This command ends processing for the menu item or procedure if "expression" is not zero.
Note that many functions return @TRUE (1) or @FALSE (0), whick you can use to decide
whether to cancel a menu item or procedure.

If either "tltle" or "message" contains a string, a messame gox with a title and a message is
displayed before exiting.

    This example in plain text:

;Unconditional Termination w/o message

;Same as "Exit"

Terminate (@TRUE,"","")

;Basically a no-op

Terminate(@FALSE,"","This will never terminate")

;Exits with message if a is less than zero

Terminate(a<0,"Error","Cannot use negative num;bers!")

;Exits w/o message if answer isn't "YES"

Terminate(answer!="YES","","")

See Also:
Display, Pause, Message

Terminate

;Unconditional Termination w/o message

;Same as "Exit"

Terminate (@TRUE,"","")

;Basically a no-op

Terminate(@FALSE,"","This will never terminate")

;Exits with message if a is less than zero

Terminate(a<0,"Error","Cannot use negative num;bers!")

;Exits w/o message if answer isn't "YES"

Terminate(answer!="YES","","")

TextBox

Displays a file in a listbox on the screen and returns selected line, if any.

Syntax:
TextBox (title, filename)

Parameters:
"title" = listbox title.

"filename" = file containing contents of listbox.

Returns:
(string) =highlighted string, if any.

This function loads a file into a Windows listbox and displays the listbox to the user.   
TextBox has two primary uses:    First, it can be used to display multi-line messages to the
user.    In addition, because of its ability to return a selected line, it may be used as a
multiple choice question box.    The line highlighted by the user (if any) will be returned to
the program.
If disk drive and path not are part of the filename, the current directory will be examined
first, and then the DOS path will be searched to find the desired file.

    This example in plain text:

; Display WIN.INI

a = TextBox("Choose a line", "c:\windows\win.ini")

Display(3, "Chosen line", a)

which produces (at least on my system):

and then:

See Also:
ItemSelect

;TextBox

; Display WIN.INI

a = TextBox("Choose a line", "c:\windows\win.ini")

Display(3, "Chosen line", a)

TextSelect

Allows the user to choose an item from an unsorted listbox.

Syntax:
TextSelect (title, list, delimiter)

Parameters:
(s) title the title of dialog box to display.

(s) list a string containing a list of items to choose from.

(s) delimiter a string containing the character to act as delimiter between items in
the list.

Returns:
(s) the selected item.

This function displays a dialog box with a listbox inside.    This listbox is filled with an
unsorted list of items taken from a string you provide to the function.
Each item in the string must be separated (delimited) by a character, which you also pass to
the function.
The user selects one of the items by either doubleclicking on it, or single-clicking and
pressing OK.    The item is returned as a string.
If you create the list with the FileItemize or DirItemize functions you will be using a space-
delimited list.    WinItemize, however, creates a tab-delimited list of window titles since
titles can have embedded blanks.
TextSelect is like ItemSelect, except that with TextSelect the displayed box is larger and
the items in the box are not sorted alphabetically.

    This example in plain text:

DirChange(DirWindows(0))

inifiles = FileItemize("*.ini")

ini = TextSelect("Select an INI file to edit", inifiles, " ")

If ini == "" Then Exit

RunZoom("notepad.exe", ini)

See Also:
AskLine, DirItemize, FileItemize, ItemSelect, TextBox, WinItemize

;TextSelect

DirChange(DirWindows(0))

inifiles = FileItemize("*.ini")

ini = TextSelect("Select an INI file to edit", inifiles, " ")

If ini == "" Then Exit

RunZoom("notepad.exe", ini)

Version

Returns the version number of the currently-running WIL interpreter.

Syntax:
Version ()

Parameters:
(none)

Returns:
(string) =WinBatch version number.

Use this function to determine the version of WinBatch that is running.    It is useful to verify
that a batch file generated with the latest version of the language will operate properly on
what may be a different machine with a different version of WinBatch installed.

    This example in plain text:

a = Version()

See Also:
Environment, DOSVersion, WinVersion

;Version

a = Version()

WaitForKey

Waits for a specific key to be pressed.

Syntax:
WaitForKey (key1, key2, key3, key4, key5)

Parameters:
(s) key1 - key5 five keystrokes to wait for.

Returns:
(i) position of the selected keystroke (1-5).

WaitForKey requires five parameters, each of which represents a keystroke (refer to the
SendKey function for a list of special keycodes which can be used).    The WIL program will
be suspended until one of the specified keys are pressed, at which time the WaitForKey
function will return a number from 1 to 5, indicating the position of the "key" that was
selected, and the program will continue.    You can specify a null string ("") for one or more of
the "key" parameters if you don't need to use all five.
WaitForKey will detect its keystrokes in most, but not all, Windows applications.    Any
keystroke that is pressed is also passed on to the underlying application.

    This example in plain text:

k = WaitForKey("{F11}", "{F12}", "{INSERT}", "", "")

If k == 1 Then Message("WaitForKey", "You pressed the F11 key")

If k == 2 Then Message("WaitForKey", "You pressed the F12 key")

If k == 3 Then Message("WaitForKey", "You pressed the Insert key")

See Also:
IsKeyDown

;WaitForKey

k = WaitForKey("{F11}", "{F12}", "{INSERT}", "", "")

If k == 1 Then Message("WaitForKey", "You pressed the F11 key")

If k == 2 Then Message("WaitForKey", "You pressed the F12 key")

If k == 3 Then Message("WaitForKey", "You pressed the Insert key")

WallPaper

Changes the Windows wallpaper.

Syntax:
WallPaper (bmp-name, tile)

Parameters:
"bmp-name" = Name of the BMP wallpaper file.

tile = @TRUE if wallpaper should be tiled.

@FALSE if wallpaper should not be tiled.

Returns:
(integer) always 0

This function immediately changes the Windows wallpaper.    It can even be used for
wallpaper "slide shows."

    This example in plain text:

DirChange("c:\windows")

a = FileItemize("*.bmp")

a = ItemSelect("Select New paper", a, " ")

tile = @FALSE

If FileSize(a) < 40000 Then tile = @TRUE

Wallpaper(a, tile)

;WallPaper

DirChange("c:\windows")

a = FileItemize("*.bmp")

a = ItemSelect("Select New paper", a, " ")

tile = @FALSE

If FileSize(a) < 40000 Then tile = @TRUE

Wallpaper(a, tile)

WinActivate

Activates a previously running window.

Syntax:
WinActivate (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be activated.

Returns:
(integer) @TRUE if a window was found to activate;

@FALSE if no windows were found.

Use this function to activate windows for user input.

    This example in plain text:

Run("notepad.exe", "")

Run("clock.exe", "")

WinActivate("Notepad")

See Also:
WinCloseNot, WinGetActive, WinShow

;WinActivate

Run("notepad.exe", "")

Run("clock.exe", "")

WinActivate("Notepad")

WinArrange

Arranges, tiles, and/or stacks application windows.

Syntax:
WinArrange (style)

Parameters:
style = one of the following:    @STACK, @TILE (or @ARRANGE), @ROWS, or
@COLUMNS.

Returns:
(integer) always @TRUE.

Use this function to rearrange the open windows on the screen.    (Any iconized programs are
unaffected.)
When you specify @ROWS and you have more than four open windows, or if you specify
@COLUMNS and you have more than three open windows, WinBatch will revert to @TILE.

    This example in plain text:

; Reveal all windows

WinArrange(@TILE)

See Also:
WinItemize, WinHide, WinIconize, WinPlace, WinShow, WinZoom

;WinArrange

; Reveal all windows

WinArrange(@TILE)

WinClose

Closes an open window.

Syntax:
WinClose (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be closed.

Returns:
(integer) @TRUE if a window was found to close;

@FALSE if no windows were found.

Use this function to close windows.
WinClose will not close the window which contains the currently-executing WIL file.    You
can, however, use EndSession to end the current Windows session.

    This example in plain text:

Run("notepad.exe", "")

WinClose("Notepad")

See Also:
WinCloseNot, WinHide, WinIconize, WinWaitClose

;WinClose

Run("notepad.exe", "")

WinClose("Notepad")

WinCloseNot

Closes all windows, except those provided as parameters.

Syntax:
WinCloseNot (partial-windowname [, partial-windowname]...)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    Any windows whose titles match
the partial names will stay open.

Returns:
(integer) always @TRUE.

Use this function to close all windows except those specifically listed in the parameter
strings.
At least one partial windowname must be given.    A null-string parameter would match all
windows, or, in other words, close nothing.

    This example in plain text:

; The statement below will close all windows except:

; 1) Program Manager (starts with 'Program')

; 2) Clock    (starts with 'Clo')

WinCloseNot("Program", "Clo")

See Also:
WinItemize, WinClose, WinHide, WinIconize, WinWaitClose

;WinCloseNot

; The statement below will close all windows except:

; 1) Program Manager (starts with 'Program')

; 2) Clock    (starts with 'Clo')

WinCloseNot("Program", "Clo")

WinConfig

Returns WIN3 mode flags.

Syntax:
WinConfig ()

Parameters:
(none)

Returns:
(integer) sum of windows configuration bits.

Returns Windows configuration information as a number, which is the sum of the following
individual bits:

1 Protected Mode
2 80286 CPU
4 80386 CPU
8 80486 CPU
16 Standard Mode
32 Enhanced Mode
64 8086 CPU
128 80186 CPU
256 Large PageFrame
512 Small PageFrame
1024 80x87 Installed

You will need to use bitwise operators to extract the individual bits.

    This example in plain text:

cfg = WinConfig()

If cfg & 32 Then Display(2, "Windows Mode", "Enhanced Mode")

If cfg & 16 Then Display(2, "Windows Mode", "Standard Mode")

If !(cfg & 1) Then Display(2, "Windows Mode", "Real Mode")

cfg = WinConfig()

If cfg & 1024 Then Display(2, "Math co-processor", "Yes")

If !(cfg & 1024) Then Display(2, "Math co-processor", "No")

;WinConfig

cfg = WinConfig()

If cfg & 32 Then Display(2, "Windows Mode", "Enhanced Mode")

If cfg & 16 Then Display(2, "Windows Mode", "Standard Mode")

If !(cfg & 1) Then Display(2, "Windows Mode", "Real Mode")

cfg = WinConfig()

If cfg & 1024 Then Display(2, "Math co-processor", "Yes")

If !(cfg & 1024) Then Display(2, "Math co-processor", "No")

WinExeName

Returns the name of the executable file which created a specified window.

Syntax:
WinExeName (partial-windowname)

Parameters:
(s) partial-windowname the initial part of, or an entire, window name.

Returns:
(s) name of the E file.

Returns the name of the E file which created the first window found whose title matches
"partial-windowname".
"Partial-windowname" is the initial part of a window name, and may be a complete window
name.    It is case-sensitive.    You should specify enough characters so that "partial-
windowname" matches only one existing window.

    This example in plain text:

prog = WinExeName("WinCheck")

WinClose("WinCheck")

Delay(5)

Run(prog, "")

See Also:
Run, WinExist, WinGetActive, WinName

;WinExeName

prog = WinExeName("WinCheck")

WinClose("WinCheck")

Delay(5)

Run(prog, "")

WinExist

Tells if Window exists.

Syntax:
WinExist (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.

Returns:
(integer) @TRUE if a matching window is found.

@FALSE if a matching window is not found.

Note: The partial window name you give must match the initial portion of the window name
(as appears in the title bar) exactly, including proper case (upper or lower) and punctuation.

    This example in plain text:

If WinExist("Clock") == @FALSE Then RunIcon("Clock", "")

;WinExist

If WinExist("Clock") == @FALSE Then RunIcon("Clock", "")

WinGetActive

Gets the title of the active window.

Syntax:
WinGetActive ()

Returns:
(string) title of active window.

Use this function to determine which window is currently active.

    This example in plain text:

currentwin = WinGetActive()

See Also:
WinItemize, WinActivate

;WinGetActive

currentwin = WinGetActive()

WinHide

Hides a window.

Syntax:
WinHide (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be hidden.

Returns:
(integer) @TRUE if a window was found to hide;

@FALSE if no windows were found.

Use this function to hide windows.    The programs are still running when they are hidden.
A "partial-windowname" of "" (null string) hides the current WinBatch window.

    This example in plain text:

Run("notepad.exe", "")

WinHide("Notepad")

Delay(3)

WinShow("Notepad")

See Also:
WinClose, WinIconize, WinPlace

;WinHide

Run("notepad.exe", "")

WinHide("Notepad")

Delay(3)

WinShow("Notepad")

WinIconize

Iconizes a window.

Syntax:
WinIconize (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be iconized.

Returns:
(integer) @TRUE if a window was found to iconize;

@FALSE if no windows were found.

Use this function to turn a window into an icon at the bottom of the screen.
A "partial-windowname" of "" (null string) iconizes the current WinBatch window.

    This example in plain text:

Run("clock.exe", "")

WinIconize("Clo") ; partial window name used here

See Also:
WinClose, WinHide, WinPlace, WinShow, WinZoom

;WinIconize

Run("clock.exe", "")

WinIconize("Clo") ; partial window name used here

WinItemize

Returns a tab-delimited list of all open windows.

Syntax:
WinItemize ()

Parameters:
(none)

Returns:
(string) list of the titles of all open windows.

This function compiles a list of all the open application windows' titles and separates the
titles by tabs.    This is especially useful in conjunction with the ItemSelect function, which
enables the user to choose an item from such a tab-delimited list.
Note this behaves somewhat differently than FileItemize and DirItemize, which create
space-delimited lists.    This is because window titles regularly contain embedded spaces.

    This example in plain text:

; Find a window

allwins = WinItemize()

htab = Num2Char(9)

mywind = ItemSelect("Windows", allwins, htab)

WinActivate(mywind)

See Also:
DirItemize, FileItemize, ItemSelect

;WinItemize

; Find a window

allwins = WinItemize()

htab = Num2Char(9)

mywind = ItemSelect("Windows", allwins, htab)

WinActivate(mywind)

WinMetrics

Returns Windows system information.

Syntax:
WinMetrics (request#)

Parameters:
(i) request# see below.

Returns:
(i) see below.

The request# parameter determines what piece of information will be returned.
Req# Return value
-1 Number of colors supported by video driver
0 Width of screen, in pixels
1 Height of screen, in pixels
2 Width of arrow on vertical scrollbar
3 Height of arrow on horizontal scrollbar
4 Height of window title bar
5 Width of window border lines
6 Height of window border lines
7 Width of dialog box frame
8 Height of dialog box frame
9 Height of thumb box on scrollbar
10 Width of thumb box on scrollbar
11 Width of an icon
12 Height of an icon
13 Width of a cursor
14 Height of a cursor
15 Height of a one line menu bar
16 Width of full screen window
17 Height of a full screen window
18 Height of Kanji window (Japanese)
19 Is a mouse present (0 = No, 1 = Yes)
20 Height of arrow on vertical scrollbar
21 Width of arrow on horizontal scrollbar
22 Is debug version of Windows running (0 = No, 1 = Yes)
23 Are Left and Right mouse buttons swapped (0 = No, 1 = Yes)
24 Reserved
25 Reserved
26 Reserved
27 Reserved
28 Minimum width of a window
29 Minimum height of a window
30 Width of bitmaps in title bar
31 Height of bitmaps in title bar
32 Width of sizeable window frame
33 Height of sizeable window frame

34 Minimum tracking width of a window
35 Minimum tracking height of a window

    This example in plain text:

mouse = "NO"

If WinMetrics(19) == 1 Then mouse = "YES"

Message("Is there a mouse installed?", mouse)

See Also:
MouseInfo, NetGetCaps, WinConfig, WinParmGet, WinResources

;WinMetrics

mouse = "NO"

If WinMetrics(19) == 1 Then mouse = "YES"

Message("Is there a mouse installed?", mouse)

WinName

Returns the name of the current WIL Interpreter window.

Syntax:
WinName ()

Parameters:
(none)

Returns:
(s) window name.

Returns the name of the current WIL interpreter (eg, Command Post or WinBatch) window.

    This example in plain text:

tab = Num2Char(9)

allwins = WinItemize()

win = ItemSelect("Close window", allwins, tab)

If win == WinName() Then Goto nocando

WinClose(win)

Exit

:nocando

Message("Sorry", "I can't close myself")

See Also:
WinActivate, WinExeName, WinGetActive, WinItemize, WinTitle

;WinName

tab = Num2Char(9)

allwins = WinItemize()

win = ItemSelect("Close window", allwins, tab)

If win == WinName() Then Goto nocando

WinClose(win)

Exit

:nocando

Message("Sorry", "I can't close myself")

WinParmGet

Returns system information.

Syntax:
WinParmGet (request#)

Parameters:
(i) request# see below.

Returns:
(s) see below.

The request# parameter determines what piece of information will be returned.
Req#      Meaning Return value

1 Beeping 0 = Off, 1 = On
2 Mouse sensitivity "threshold1 threshold2 speed"
3 Border Width Width in pixels
4 Keyboard Speed Keyboard Repeat rate
5 LangDriver name of LANGUAGE.DLL
6 Horiz. Icon Spacing Spacing in pixels
7*Screen Save Timeout Timeout in seconds
8*Is screen saver enabled 0 = No, 1 = Yes
9 Desktop Grid size Grid Size
10 Wallpaper BMP file BMP file name
11 Desktop PatternPattern codes (string of 8 space-delimited nums.)
12* Keyboard Delay Delay in milliseconds
13 Vertical Icon Spacing Spacing in pixels
14 IconTitleWrap 0 = No, 1 = Yes
15* MenuDropAlign 0 = Right, 1 = Left
16 DoubleClickWidth Allowable horiz. movement in pixels for
DblClick
17 DoubleClickHeight Allowable vert. movement in pixels for
DblClick
18 DoubleClickSpeed Max time in millisecs between clicks for
DblClick
19 MouseButtonSwap 0 = Not swapped, 1 = swapped
20* Fast Task Switch0 = Off, 1 = On

Items marked with an asterisk (*) require Windows 3.1 or higher.

    This example in plain text:

If WinParmGet(8) == 1 Then Message("", "Screen saver is active")

See Also:
MouseInfo, NetGetCaps, WinConfig, WinMetrics, WinParmSet, WinResources

;WinParmGet

If WinParmGet(8) == 1 Then Message("", "Screen saver is active")

WinParmSet

Sets system information.

Syntax:
WinParmSet (request#, new-value, ini-control)

Parameters:
(i) request# see WinParmGet

(s) new-value see WinParmGet

(i) ini-control see below.

Returns:
(int) previous value of the setting.

See WinParmSet for a list of valid request#'s and values.
The "ini-control" parameter determines to what extent the value gets updated:

0 Set system value in memory only for future reference

1 Write new value to appropriate INI file

2 Broadcast message to all applications informing them of new value

3 Both 1 and 2

    This example in plain text:

WinParmSet(9, "2", 3) ; sets desktop grid size to 2

See Also:
WallPaper, WinParmGet

;WinParmSet

WinParmSet(9, "2", 3) ; sets desktop grid size to 2

WinPlace

Places a window anywhere on the screen.

Syntax:
WinPlace (x-ulc, y-ulc, x-brc, y-brc, partial-windowname)

Parameters:
x-ulc = how far from the left of the screen to place the upper-left corner (0-1000).

y-ulc = how far from the top of the screen to place the upper-left corner (0-1000).

x-brc = how far from the left of the screen to place the bottom-right corner (10-1000)
or @NORESIZE.

y-brc = how far from the top of the screen to place the bottom-right corner (10-1000)
or @NORESIZE or @ABOVEICONS.

"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be moved to the new position.

Returns:
(integer) @TRUE if a window was found to move;

@FALSE if no windows were found.

Use this function to move windows on the screen.    (You cannot, however, move icons or
windows that have been maximized to full screen.)
The "x-ulc", "y-ulc", "x-brc", and "y-brc" parameters are based on a logical screen that is
1000 points wide by 1000 points high.
You can move the window without changing the width and/or height by specifying
@NORESIZE for the "x-brc" and/or "y-brc" parameters, respectively.
You can fix the bottom of the window to sit just above the line of icons along the bottom of
the screen by specifying a "y-brc" of @ABOVEICONS.
Some sample parameters:

Upper left quarter of the screen:    0, 0, 500, 500
Upper right quarter:    500, 0, 1000, 500
Center quarter:    250, 250, 750, 750
Lower left eighth:    0, 750, 500, 1000

A handy utility program is included with WinBatch, called WININFO.EXE.    This program lets
you take an open window that is sized and positioned the way you like it, and automatically
create the proper WinPlace statement for you.    It puts the text into the Clipboard, from
which you can paste it into your batch code:
You'll need a mouse to use WinInfo.    While WinInfo is the active window, place the mouse
over the window you wish to create the WinPlace statement for, and press the spacebar.   
The new statement will be placed into the Clipboard.    Then press the Esc key to close
WinInfo.

    This example in plain text:

WinPlace(0, 0, 200, 200, "Clock")

See Also:
WinArrange, WinHide, WinIconize, WinShow, WinZoom

;WinPlace

WinPlace(0, 0, 200, 200, "Clock")

WinPlaceGet

Returns window coordinates.

Syntax:
WinPlaceGet (win-type, partial-windowname)

Parameters:
(i) win-type @ICON, @NORMAL, or @ZOOMED

(s) partial-windowname the initial part of, or an entire, window name.

Returns:
(s) window coordinates (see below).

This function returns the coordinates for an iconized, normal, or zoomed window.
"Partial-windowname" is the initial part of a window name, and may be a complete window
name.    It is case-sensitive.    You should specify enough characters so that "partial-
windowname" matches only one existing window.    If it matches more than one window, the
most recently accessed window which it matches will be used.
The returned value is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)

Normal windows "upper-x upper-y lower-x lower-y"

Zoomed windows "x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

    This example in plain text:

Run("clock.exe", "")

pos = WinPlaceGet(@NORMAL, "Clock")

Delay(2)

WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")

Delay(2)

WinPlaceSet(@NORMAL, "Clock", pos)

See Also:
WinGetActive, WinItemize, WinPlaceSet, WinPosition, WinState

;WinPlaceGet

Run("clock.exe", "")

pos = WinPlaceGet(@NORMAL, "Clock")

Delay(2)

WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")

Delay(2)

WinPlaceSet(@NORMAL, "Clock", pos)

WinPlaceSet

Sets window coordinates.

Syntax:
WinPlaceSet (win-type, partial-windowname, position-string)

Parameters:
(i) win-type @ICON, @NORMAL, or @ZOOMED

(s) partial-windowname the initial part of, or an entire, window name.

(s) position-string window coordinates (see below).

Returns:
(s) previous coordinates.

This function sets the coordinates for an iconized, normal, or zoomed window.    The window
does not have to be in the desired state to set the coordinates; for example, you can set the
iconized position for a normal window so that when the window is subsequently iconized, it
will go to the coordinates that you've set.
"Partial-windowname" is the initial part of a window name, and may be a complete window
name.    It is case-sensitive.    You should specify enough characters so that "partial-
windowname" matches only one existing window.    If it matches more than one window, the
most recently accessed window which it matches will be used.
"Position-string" is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)

Normal windows "upper-x upper-y lower-x lower-y"

Zoomed windows "x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

    This example in plain text:

WinPlaceSet(@ICON, "Clock", "10 950")

WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")

WinPlaceSet(@ZOOMED, "Clock", "-5 -5")

See Also:
IconArrange, WinActivate, WinArrange, WinPlace, WinPlaceGet, WinState

;WinPlaceSet

WinPlaceSet(@ICON, "Clock", "10 950")

WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")

WinPlaceSet(@ZOOMED, "Clock", "-5 -5")

WinPosition

Returns Window position.

Syntax:
WinPosition (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.

Returns:
(string) window coordinates, delimited by commas.

Returns the current Window position information for the selected Window.    It returns 4
comma-separated numbers (see WinPlace for details).

    This example in plain text:

Run("clock.exe", "") ; start Clock

WinPlace(0,0,300,300, "Clock") ; place Clock

pos = WinPosition("Clock") ; save position

delay(2)

WinPlace(200,200,300,300, "Clock") ; move Clock

delay(2)

WinPlace(%pos%, "Clock") ; restore Clock

See Also:
WinPlace

;WinPosition

Run("clock.exe", "") ; start Clock

WinPlace(0,0,300,300, "Clock") ; place Clock

pos = WinPosition("Clock") ; save position

delay(2)

WinPlace(200,200,300,300, "Clock") ; move Clock

delay(2)

WinPlace(%pos%, "Clock") ; restore Clock

WinResources

Returns information on available memory and resources.

Syntax:
WinResources (request#)

Parameters:
(i) request# see below

Returns:
(i) see below.

The value of request# determined the piece of information returned.
Req# Return value

0 Total available memory, in bytes

1 Theoretical maximum available memory, in bytes

2 Percent of free system resources (lower of GDI and USER)

3 Percent of free GDI resources

4 Percent of free USER resources

    This example in plain text:

mem = WinResources(0)

Message("Available memory", "%mem% bytes")

See Also:
WinConfig, WinMetrics, WinParmGet

;WinResources

mem = WinResources(0)

Message("Available memory", "%mem% bytes")

WinShow

Shows a window in its "normal" state.

Syntax:
WinShow (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be shown.

Returns:
(integer) @TRUE if a window was found to show;

@FALSE if no windows were found.

Use this function to restore a window to its "normal" size and position.
A "partial-windowname" of "" (null string) restores the current WIL interpreter window.

    This example in plain text:

RunZoom("notepad.exe", "")

; other processing...

WinShow("Notepad")

See Also:
WinArrange, WinHide, WinIconize, WinZoom

;WinShow

RunZoom("notepad.exe", "")

; other processing...

WinShow("Notepad")

WinState

Returns      the current state of a window.

Syntax:
WinState (partial-windowname)

Parameters:
(s) partial-windowname the initial part of, or an entire, window name.

Returns:
(i) window state (see below).

"Partial-windowname" is the initial part of a window name, and may be a complete window
name.    It is case-sensitive.    You should specify enough characters so that "partial-
windowname" matches only one existing window.    If it matches more than one window, the
most recently accessed window which it matches will be used.
Possible return values are as follows.

Value Symbolic name Meaning

-1 Specified window exists, but is hidden

0 Specified window does not exist

1 @ICON Specified window is iconic (minimized)

2 @NORMAL Specified window is a normal window

3 @ZOOMED Specified window is zoomed (maximized)

    This example in plain text:

If WinState("Notepad") == @ICON Then WinShow("Notepad")

See Also:
Run, WinExist, WinGetActive, WinHide, WinIconize, WinItemize, WinPlace,
WinPlaceGet, WinPlaceSet, WinPosition, WinShow, WinZoom

;WinState

If WinState("Notepad") == @ICON Then WinShow("Notepad")

WinTitle

Changes the title of a window.

Syntax:
WinTitle (partial-windowname, new-name)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be shown.

"new-name" = the new name of the window.

Returns:
(integer) @TRUE if a window was found to rename;

@FALSE if no windows were found.

Use this function to change a window's title.
A "partial-windowname" of "" (null string) refers to the current WIL interpreter window.
Warning:    Some applications may rely upon their window's title staying the same!   
Therefore, the WinTitle function should be used with caution and adequate testing.

    This example in plain text:

; Capitalize title of window

htab = Num2Char(9)

allwinds = WinItemize()

mywin = ItemSelect("Uppercase Windows", allwinds, htab)

WinTitle(mywin, StrUpper(mywin))

Drop(htab, allwinds, mywin)

See Also:
WinItemize

;WinTitle

; Capitalize title of window

htab = Num2Char(9)

allwinds = WinItemize()

mywin = ItemSelect("Uppercase Windows", allwinds, htab)

WinTitle(mywin, StrUpper(mywin))

Drop(htab, allwinds, mywin)

WinVersion

Provides the version number of the current Windows system.

Syntax:
WinVersion (level)

Parameters:
level = either @MAJOR or @MINOR.

Returns:
(integer) either major or minor part of the Windows version number.

Use this command to determine which version of Windows is currently running.
@MAJOR returns the integer part of the Windows version number; i.e. 1.0, 2.11, 3.0, etc.
@MINOR returns the decimal part of the Windows version number; i.e. 1.0, 2.11, 3.0, etc.

    This example in plain text:

minorver = WinVersion(@MINOR)

majorver = WinVersion(@MAJOR)

Message("Windows Version", StrCat(majorver, ".", minorver))

See Also:
Version, DOSVersion

;WinVersion

minorver = WinVersion(@MINOR)

majorver = WinVersion(@MAJOR)

Message("Windows Version", StrCat(majorver, ".", minorver))

WinWaitClose

Suspends the batch file execution until a specified window has been closed.

Syntax:
WinWaitClose (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    WinWaitClose suspends
execution until all matching windows have been closed.

Returns:
(integer) @TRUE if at least one window was found to wait for;

@FALSE if no windows were found.

Use this function to suspend the batch file's execution until the user has finished using a
given window and has manually closed it.

    This example in plain text:

Run("clock.exe", "")

Display(4, "Note", "Close Clock to continue")

WinWaitClose("Clock")

Message("Continuing...", "Clock closed")

See Also:
Delay, Yield

;WinWaitClose

Run("clock.exe", "")

Display(4, "Note", "Close Clock to continue")

WinWaitClose("Clock")

Message("Continuing...", "Clock closed")

WinZoom

Maximizes a window to full-screen.

Syntax:
WinZoom (partial-windowname)

Parameters:
"partial-windowname" =

either an initial portion of, or an entire window name.    The most-recently used window
whose title matches the name will be shown.

Returns:
(integer) @TRUE if a window was found to zoom;

@FALSE if no windows were found.

Use this function to "zoom" windows to full screen size.
A partial-windowname of "" (null string) zooms the current WIL interpreter window.

    This example in plain text:

Run("notepad.exe", "")

WinZoom("Notepad")

Delay(3)

WinShow("Notepad")

See Also:
WinHide, WinIconize, WinPlace, WinShow

;WinZoom

Run("notepad.exe", "")

WinZoom("Notepad")

Delay(3)

WinShow("Notepad")

Yield

Provides time for other windows to do processing.

Syntax:
Yield

Use this command to give other running windows time to process.    This command will allow
each open window to process 20 or more messages.

    This example in plain text:

; run Excel and give it some time to start up

sheet = AskLine ("Excel", "File to run:", "")

Run("excel.exe", sheet)

Yield

Yield

Yield

See Also:
Delay

 ;Yield
; run Excel and give it some time to start up

sheet = AskLine ("Excel", "File to run:", "")

Run("excel.exe", sheet)

Yield

Yield

Yield

Introduction to the WIL Language
List of Commands
Outline of Commands and Procedures

WIL Language Guide
WIL statements are constructed from constants, variables, operators,
functions, commands, and comments. These are listed below. You can
start at any topic and use the browse sequence to tour the others. The Quick
Start topic explains the most frequent use of WIL: launching Windows
applications.

Wil Function List
Quick Start

Check Box Dialog
Command Line Parameters
Comments
Constants
Dialog Boxes
Directory List Dialog (Full)
Error Handling
File List Dialog (Plain)
Function Parameters
Hot Keys
Identifiers
Keywords
LabelsMenus
Operators (Arithmetic, Logical)
Precedence and Evaluation Order
Predefined Constants
Programming Dialog Boxes (in depth)
Radio Button Dialog
Statements
Substitution
Variables

Quick Start

Windows provides weak support for launching applications. Windows
applications often need several files to launch. MS DOS makes locating them
difficult. With a simple WIL script, you can put all the files for your application
in one directory. It does NOT have to be on the MS DOS path. When it comes
time to find or update your application, all its files are in one place. You do
not have to be concerned about Windows applications taking more than their
fair share of your MS DOS path space.

The launching process goes like this:

DirChange("c:\level1\level2")
Run("program.exe","")

The first statement, DirChange("c:\level1\level2"), temporarily changes to
the application's directory. After the application launches, the directory will
automatically return to what it was before you launched your application.
With this feature, you can easily keep your work in project directories, and
launch any number of applications from there without having to search out
applications in their directories.

The second statement, Run("program.exe",""), launches your application.
The two double quotation marks following the comma indicate that no file
names or other parameters will be sent to the program as it launches.

As you may know, programs can automatically launch with one of your files
loaded and ready to go. Putting the name of your data file between those
quotes will accomplish that. In this event, the second line might look like:

Run("program.exe","c:\datadir\data.fil")
How you access your script varies between the applications that implement
the WIL Language. There are two main types: menu access and batch file
access. Access through menus requires the creation of menu script files with
the Windows Notepad text editor. Such a file for the above example would
look like this:

&Program
DirChange("c:\level1\level2")
Run("program.exe","")

There is a space before the ampersand in the first line. There are tabs before
the starts of the second and third lines. The ampersand is optional; it just
indicates which character is used by the Windows Alt key menu access
feature. Any character may be used for this.

Batch file script access is gained by launching the file containing the script.
This is the same as the MS DOS batch file activation method. The WIL
language offers, of course, a far richer choice of commands.

Now that you understand the basic construction of useful WIL scripts, you
can browse through this WIL Language Guide to look over more examples.
The commands are all cross referenced with electronic hypertext links. There
are many useful examples throughout this WIL Language Help application.
You can access them through the main indexes, the Search button, and the
Browse button. WIL Language Help always lets you use the Back button to
return to previous topics.

Command-Line Parameters

WinBatch is run with the following command line:
WINBATCH filename.WBT p1 p2 ... p9
"filename.wbt" is any valid WIL file.

"p1 p2 ... p9" are optional parameters (maximum of nine) to be passed to the
WBT file on startup, delimited by spaces.
Parameters passed to a WBT file are automatically parsed into variables
named param1, param2, etc.    An additional variable, param0, is the total
number of command-line parameters.

Comments
A comment is a sequence of characters that are ignored when processing a
command.    A semicolon (not otherwise part of a string constant) indicates
the beginning of a comment.
All characters to the right of the semicolon are considered comments, and
are ignored.
Blank lines are also ignored.

Examples of comments:

; This is a comment

ABC = 5 ; This is also a comment

Constants
The programming language supports both integer and string constants.

Integer Constants

Integer constants are built from the digits 0 through 9.    They can range in
magnitude from negative to positive 231 -1    (approximately two billion).   
Constants larger than these permissible magnitudes will produce
unpredictable results.

Examples of integer constants:
1
-45
377849
-1999999999

String Constants

String constants are comprised of displayable characters bounded by quote
marks.    You can use double quotes ("), single quotes ('), or back quotes (`)
to enclose a string constant, as long as the same type of quote is used to
both start and end it.    If you need to embed the delimiting quote mark inside
the string constant, use the delimiting quote mark twice.

Examples of string constants:
"a"
`Betty Boop`
"This constant has an embedded "" mark"
'This constant also has an embedded " mark'

Predefined Constants

The programming language has a number of built-in integer constants that
can be used for various purposes.    These start with the @-sign, and are
case-insensitive (although we prefer to use ALL CAPS).

Some predefined constants:
@FALSE
@NO

@STACK
@TILE
@TRUE
@YES

Dialog Boxes--Introduction and Palette

Palette of Dialog Box Samples

 Check Boxes

    Radio Buttons

    Simple File List Box

    Complete File and Directory List Box

 Checkbox Sample: An example of checkboxes in a dialog box.

Sample Checkbox

To try this dialog, follow these instructions:

1. Copy the sample dialog box code into a file called 3chkbox.wbd. Create
this file with a text editor such as the Windows Notepad, or a programming
text editor like WinEdit. Use the Edit Copy and Edit Paste menu items in
Windows Help and in your editor to transfer the code from this Help file to
3chkbox.wbd.

2. To simplify matters, save (File Save AS...) your templates in a distinctive
directory. The directory you use to store your WIL language files would be a
good choice.

3. Create a macro or Command Post menu item with these lines:

DirChange("Full name of the directory in item 2.")
DialogBox("Check Box Demo","3chkbox.wbd")

4. Run the macro or menu item and you will see the sample dialog box. From
the code, you can see that although it is very simple, it performs a valuable
function.

5. To use this dialog in your menus, include it by substituting your own labels
for the This is Box 1 and the other labels in the code. By using this dialog,
the variables Box1, Box2, and Box3 will all be set to either 0 or 1 depending
on whether or not the user checks them.    You can then use these variables
anywhere in your WIL language program.

;Check Box Sample Code

[Box1+1This is Box 1]
[Box2+1This is Box 2]
[Box3+1This is Box 3]

Labels

Labels in the WIL language start with a colon.

Example:

file="*.*"
DialogBox ("Demo of File and Directory Box","dirfiles.wbd")
If file=="" then Goto Label2
:Label1
Message ("Label Message"," You selected %file%")
Goto Goodbye
:Label2
Message("Label Message"," You entered no file at all")

:Goodbye

Radio Button Sample: An example of a simple file directory selection
box.

Sample Radio Button Dialog

To try this dialog, follow these instructions:

1. Copy the sample dialog box code into a file called radiobtn.wbd. Create
this file with a text editor such as the Windows Notepad, or a programming
text editor like WinEdit. Use the Edit Copy and Edit Paste menu items in
Windows Help and in your editor to transfer the code from this Help file to
radiobtn.wbd.

2. To simplify matters, save (File Save AS...) your templates in a distinctive
directory. The directory you use to store your WIL language files would be a
good choice.

3. Create a macro or Command Post menu item with these lines:

DirChange("Full name of the directory in item 2.")
DialogBox("File List Dialog","radiobtn.wbd")

4. Run the macro or menu item and you will see the sample dialog box. From
the code, you can see that although it is very simple, it performs a valuable
function.

5. To use this dialog in your menus, remember that the user's action will
store the chosen file name in the global variable RadioBtn. Check the code to
see this.    You can then use the variable RadioBtn anywhere in your WIL
language program. If you want to erase this variable after using it, use the
Drop(RadioBtn) statement.

;Sample Code for a dialog with radio buttons.
;The variable RadioBtn will acquire the
;values 1, 2, or 3 depending on the button
;selected by the user.

;The labels Radio Button 1, and so on, can
;easily be changed to your values.

[RadioBtn^1Radio Button 1][RadioBtn^2Radio Button 2]
[RadioBtn^3Radio Button 3]

Filelist Sample: An example of a simple file directory selection box.

Sample Filelist Dialog

To try this dialog, follow these instructions:

1. Copy the sample dialog box code into a file called filelist.wbd. Create this
file with a text editor such as the Windows Notepad, or a programming text
editor like WinEdit. Use the Edit Copy and Edit Paste menu items in Windows
Help and in your editor to transfer the code from this Help file to filelist.wbd.

2. To simplify matters, save (File Save AS...) your templates in a distinctive
directory. The directory you use to store your WIL language files would be a
good choice.

3. Create a macro or Command Post menu item with these lines:

DirChange("Full name of the directory in item 2.")
DialogBox("File List Dialog","filelist.wbd")

4. Run the macro or menu item and you will see the sample dialog box. From
the code, you can see that although it is very simple, it performs a valuable
function.

5. To use this dialog in your menus, remember that the user's action will
store the chosen file name in the global variable file. Check the code to see
this.    You can then use the variable file anywhere in your WIL language
program. If you want to erase this variable after using it, use the Drop(file)
statement. If you want to preset the dialog for any file extension, preface

your DialogBox statement with this line:

File="*.ext"
where the *.ext can be a wildcard extension, a specific file extension, or a
specific file name.

;File List Dialog Sample.
;The file name returns in the variable file.
; You can freely substitute your own.

[file$ ]
                      [file#                 ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]
[file\ ]

Dirfiles Sample: An example of a full directory selection box.

Sample Directory List Box

To try this dialog, follow these instructions:

1. Copy the sample dialog box code into a file called dirfiles.wbd. Create this
file with a text editor such as the Windows Notepad, or a programming text
editor like WinEdit. Use the Edit Copy and Edit Paste menu items in Windows
Help and in your editor to transfer the code from this Help file to dirfiles.wbd.

2. To simplify matters, save (File Save AS...) your templates in a distinctive
directory. The directory you use to store your WIL language files would be a
good choice.

3. Create a macro or Command Post menu item with these lines:

DirChange("Full name of the directory in item 2.")
DialogBox("Full Directory Box Demo","dirfiles.wbd")

4. Run the macro or menu item and you will see the sample dialog box. From
the code, you can see that although it is very simple, it performs a valuable
function.

5. To use this dialog in your menus, remember that the user's action will
store the chosen file name in the global variable files. Check the code to see
this.    You can then use the variable file anywhere in your WIL language
program. If you want to erase this variable after using it, use the Drop(file)
statement. If you want to preset the dialog for any file extension, preface
your DialogBox statement with a Files="*.ext" where the ext can be a
wildcard extension, a specific file extension, or a specific file name.

;Full Directory Dialog Sample.
;The file name returns in the variable file.
; You can freely substitute your own.

Directory: [file$ ]

File: [file#                 ]    (Wildcards OK)

File List: [file\ ]
                      [file\ ]
                      [file\ ]
                      [file\ ]
                      [file\ ]
                      [file\ ]

Error Handling
There are three types of errors that can occur while processing a batch file:   
Minor, Moderate, and Fatal.    What happens when an error occurs depends
on the current error mode, which is set with the ErrorMode function.
There are three possible modes you can specify:
@CANCEL

User is notified when any error occurs, and then the batch file is canceled. 
This is the default.

@NOTIFY
User is notified when any error occurs, and has option to continue unless
the error is fatal.

@OFF
User is only notified if the error is moderate or fatal.    User has option to
continue unless the error is fatal.

The function LastError returns the code of the most-recent error
encountered during the current batch file.
Minor errors are numbered from 1000 to 1999.
Moderate errors are numbered from 2000 to 2999.
Fatal errors are numbered from 3000 to 3999.
Error handling is reset to @CANCEL at the start of each batch file.

Minor Errors
Minor errors are ignored if the current error mode has been set to @OFF.    If
the error mode is @NOTIFY the user has the option of continuing with the
batch file or canceling it.
1006 File Copy/Move: No matching files found
1017 File Delete: No matching files found
1018 File Delete: Delete Failed
1024 File Rename: No matching files found
1025 File Rename: Rename failed
1028 LogDisk: Requested drive not online
1029 DirMake: Dir not created
1030 DirRemove: Dir not removed
1031 DirChange: Dir not found/changed
1039 WinClose: Window not found
1040 WinHide: Window not found
1041 WinIconize: Window not found
1042 WinZoom: Window not found
1043 WinShow: Window not found
1044 WinPlace: Window not found
1045 WinActivate: Window not found

1119 WinPosition: Window not found
1121 WinTitle: Window not found
1100 StrIndex/StrScan 3rd parameter out of bounds
1900 WinExec 0: Out of Memory
1902 WinExec 2: File Not Found
1903 WinExec 3: Path Not Found
1905 WinExec 5: Attempt to dynlink to a task
1906 WinExec 6: Lib requires data segs for each task
1910 WinExec 10: Incorrect Windows Version
1911 WinExec 11: Invalid E file
1912 WinExec 12: Cannot run OS/2 application
1913 WinExec 12: Cannot run DOS4.0 application
1914 WinExec 14: Unknown E type
1915 WinExec 15: Attempt to run old E in protect mode
1916 WinExec 16: Attempted 2Nd E with multiple writeable datasegs
1917 WinExec 17: Nonshareable DLLs already in use
1918 WinExec 18: App marked for protected mode only
1932 WinExec: Undefined Error

Moderate Errors
If the error mode is @NOTIFY or @OFF, the user has the option of
continuing with the batch file or canceling it.
2001 SendKey: Illegal Parameters
2002 File Copy/Move: 'From' file illegal
2003 File Copy/Move: 'To'      file illegal
2004 File Copy/Move: Cannot copy/move wildcards into fixed root
2005 File Copy/Move: Cannot copy/move wildcards into fixed extension
2007 File Move: Unable to rename source file
2015 File Move:    Unable to remove source file
2016 File Delete: File name illegal
2019 File Rename: 'From' file illegal
2020 File Rename: 'To' file illegal
2021 File Rename: Attempt to rename across drive boundary. - Use MOVE
instead.
2022 File Rename: Cannot rename wildcards into a fixed filename root
2023 File Rename: Cannot rename wildcards into a fixed filename extension
2038 WinCloseNot Function Syntax error
2045 WinActivate: Window not found
2058 StrCat function syntax error
2060 Average function syntax error
2093 Dialog Box: Bad Filespec, using *.*
2112 FileSize: File Not Found
2118 FileCopy/Move: Destination file same as source

Fatal Errors
Fatal errors cause the current batch file to be canceled with an error
message, regardless of the error mode in effect.    (We show the error codes
here for consistency, but in practice you will never be able to call LastError
after a fatal error.)
3008 File Copy/Move: 'From' file open error
3009 SendKey: Could not open DEBUG text file
3010 SendKey: Could not install hook - Already Active??
3011 File Copy/Move: 'From' file length error
3012 File Copy/Move: No room left on disk.    Out of space??
3013 File Copy/Move: 'To' file open error
3014 File Copy/Move: I/O Error
3015 File Move:    Unable to remove source file
3026 LogDisk: Illegal disk drive
3027 LogDisk: DOS reports no disks!!    ???
3032 GoTo unable to lock memory for batch file
3033 GoTo label not found
3034 Clipboard owned by another app.    Cannot open.
3035 Clipboard does not contain text for ClipAppend.
3036 Clipboard cannot hold that much text (>64000 bytes)
3037 Unable to allocate memory for clipboard.    Close some applications
3046 Internal Error 3046. Function not defined
3047 Variable name over 30 chars. Too Long
3048 Substitution %Variable% not followed by % (Use %% for %)
3049 No variables exist??!!
3050 Undefined variable
3051 Undefined variable or function
3052 Uninitialized variable or undefined function
3053 Character string too long (>256 chars??)
3054 Unrecognizable item found on line
3055 Variable name is over 30 chars. Too Long
3056 Variable could not be converted to string
3057 Variable could not be converted to integer
3059 Illegal Bounds for StrSub function
3061 Illegal Syntax
3062 Attempt to divide by zero
3063 Internal Error 3063. Binary op not found
3064 Internal Error 3064. Unary op not found
3065 Unbalanced Parenthesis
3066 Wrong Number of Arguments in Function
3067 Function Syntax. Opening parenthesis missing.
3068 Function Syntax. Illegal delimiter found.
3069 Illegal assignment statement. (Use == for equality testing)
3070 Internal error 3070.    Too many arguments defined.
3071 Missing or incomplete statement

3072 THEN not found in IF statement
3073 Goto Label not specified
3074 Expression continues past expected end.
3075 Call: Parse of file/parameter line failed
3076 FileOpen: READ or WRITE not properly specified
3077 FileOpen: Open failed
3078 FileOpen: Too many (>5) files open
3079 FileClose: Invalid file handle
3080 FileClose: File not currently open
3081 FileRead: Invalid file handle
3082 FileRead: File not currently open
3084 FileWrite: Invalid file handle
3085 FileWrite: File not currently open
3087 FileRead:    File not open for reading
3088 FileRead: Attempt to read past end of file
3089 FileWrite: File not open for writing
3090 Dialog Box: File open error
3091 Dialog Box: Box too large
3092 Dialog Box: Non-text control used w/filebox.
3094 Dialog Box: Window Registration Failed
3095 Compare could not be resolved into a integer or string compare
3096 Memory allocation failure.    Out of memory for string storage
3097 Memory allocation failure.    Out of memory for variable storage
3098 Internal error, NULL pointer passed to xstrxxx subroutines
3099 CallExt function disabled.    Not currently available.
3101 Substituted line too long. (> 256 characters)
3102 Drop: Can only drop variables
3103 IsDefined: Attempting to test non-variables item
3104 Dialog Box: Window Creation Failed
3105 Batch Compiler:    CALL and CALLEXT not supported in compiled E
versions
3107 Run: Filetype is not COM, EXE, PIF or BAT
3108 FileItemize: Unable to lock file info segment
3109 FileItemize: Unable to unlock file info segment
3110 FileItemize: Unable to lock file index segment
3111 FileItemize: Unable to unlock file index segment
3113 FileSize: Filelength I/O Error
3114 FileSize: Buffer Overrun Error
3115 FileDelete: Buffer Overrun Error
3116 FileRename: Buffer Overrun Error
3117 FileCopyMove: Buffer Overrun Error

Function Parameters
Most of the functions and commands in the language require parameters. 
These come in three types:

Integer
String
Variable name

The interpreter performs automatic conversions between strings and
integers, so in general you can use them interchangeably.

Integer parameters may be any of the following:
An integer (i.e. 23)
A string representing an integer (i.e. "23")
A variable containing an integer
A variable containing a string representing an integer

String parameters may be any of the following:
A string
An integer
A variable containing a string

A variable containing an integer

Menus

One way users activate WIL Language scripts is through menus. Whether
they are used depends on the application that uses the WIL Language.
WinMacro, Command Post, and File Commander are just three applications
that make use of menus.

A WIL menu is constructed of lines of text in a simple ASCII text file. Files of
this type are automatically produced by the Windows Notepad text editor.

The menu file includes menu titles, optional hot key directives, and your WIL
Language script lines. A sample menu item that includes the Quick Start
example follows:

Program
          DirChange("c:\level1\level2")
          Run("program.exe","")

In this example, the Program is flush with the left of the Notepad page for
main menu items. Some applications allow sub menus. In that case, add one
space before the menu title for every level of sub menu. The script lines have
either a tab or at least eight spaces before them.

You can increase the functionality of the above menu item. Adding an
ampersand before any letter in the title causes that letter to be displayed in
underlined format. Such underlined letters are recognized by Windows as hot
keys accessed through an ALT--letter key combination. You can create
additional hot key access to menu items. See the hot key description in this
Wil Help.

Here is an embellished menu item:

&Program \^{F6}
          DirChange("c:\level1\level2")
          Run("program.exe","")

Either the Windows Alt--P or the WIL Language Ctrl--F6 keystroke
combinations will activate it.

See Also: Hot Keys

Hot Keys

Hot keys are keyboard sequences that immediately activate WIL Language
scripts. Hot key access is faster than dragging menus down, and some
people prefer to work from the keyboard. Hot keys are available only in those
applications that access WIL Language scripts through menus.

You can assign a hotkey combination to a menu title in your script file.    The
menu title is separated from your hot key code by a backslash \. The hotkey
combination always includes the Ctrl key plus any letter A - Z or function
{F1 - F16} key.    In addition, you can include the Alt and Shift keys for
more alternatives. Except for the letter keys, most keys are abbreviated:

Key Abbreviation

Ctrl ^
Alt !

Shift +
A through Z A through Z
Backspace {BACKSPACE} or {BS}

Break {BREAK}
Clear {CLEAR}

Delete {DELETE} or {DEL}
Down Arrow {DOWN}

End {END}
Enter {ENTER}

Escape {ESCAPE} or {ESC}
F1 through F16{F1} through {F16}

Help {HELP}
Home {HOME}
Insert {INSERT}

Left Arrow {LEFT}
Page Down {PGDN}

Page Up {PGUP}
Right Arrow {RIGHT}

Space {SPACE} or {SP}
Tab {TAB}

Up Arrow {UP}

Here are some examples of valid hot key combinations:

Hotkey Equivalent keystrokes

\^{F5} Ctrl-F5
\^!{F5} Ctrl-Alt-F5
\^+{F5} Ctrl-Shift-F5
\^!+{F5} Ctrl-Alt-Shift-F5

\^D Ctrl-D
\^!D Ctrl-Alt-D
\^+D Ctrl-Shift-D
\^!+D Ctrl-Alt-Shift-D

See Also:    MENUS

Identifiers
Identifiers are the names supplied for variables, functions, and commands in
your program.
An identifier is a sequence of one or more letters or digits that begins with a
letter.    Identifiers may have up to 30 characters.
All identifiers are case insensitive.    Upper- and lowercase characters may be
mixed at will inside variable names, commands or functions.

For example, these statements all mean the same thing:
AskLine(MyTitle, Prompt, Default)
ASKLINE(MYTITLE, PROMPT, DEFAULT)
aSkLiNe(MyTiTlE, pRoMpT, dEfAuLt)

Keywords
"Keywords" are the predefined identifiers that have special meaning to the
programming language.    These cannot be used as variable names.
WIL keywords consist of the functions, commands, and predefined
constants.

Some examples of reserved keywords:
Beep
DirChange
@Yes
FileCopy

Operators
The programming language operators take one operand ("unary operators")
or two operands ("binary operators").

Unary operators (integers only):
- Arithmetic Negation (Two's complement)
+ Identity (Unary plus)
~ Bitwise Not.    Changes each 0 bit to 1, and vice-versa.
! Logical Not.    Produces 0 (@FALSE) if the operand is
nonzero, else 1 (@TRUE) if the operand is zero.

Binary arithmetic operators (integers only):
* Multiplication
/ Division
mod Modulo
+ Addition
- Subtraction
<< Left Shift
>> Right Shift
& Bitwise And
| Bitwise Or
^ Bitwise Exclusive Or    (XOR)
&& Logical And
| | Logical Or

Binary relational operators (integers and strings):
> Greater-than
>= Greater-than or equal
< Less-than
<= Less-than or equal
== Equality

!= or <> Inequality

Assignment operator (integers and strings):
= Assigns evaluated result of an expression to a variable

Predefined Constants List

WIL provides you with a number of predefined integer constants to help
make your batch files more mnemonic:

Logical Conditions

@FALSE
@NO
@OFF
@TRUE
@YES
@ON

Window Arranging

@NORESIZE
@ABOVEICONS
@STACK
@ARRANGE
@TITLE
@ROWS
@COLUMNS

String Handling

@FWDSCAN
@BACKSCAN

System Control

@MAJOR
@MINOR

Error Handling

@CANCEL

@NOTIFY
@OFF

Keyboard Status

@SHIFT
@CTRL

Debug Control

@PARSEONLY

Programming Dialog Boxes
Syntax:

DialogBox (title, WBD file)
Parameters:

("string") title the title of the dialog box.
("string") WBD file the name of the WBD template file.

Returns:
(integer) always 0.

Template File
Each element in the template file is enclosed in square brackets, and
consists of a variable name, followed by one of the following symbols:

Symbol Meaning Example
+ check box [backup+1Save backup]
edit box [newfile#]
\ file    listbox [editfile\]
^ radio button [prog^1Note]         

[prog^2Write]
$ variable [var$]

The number following the check box and radio button symbols is the value
which will get assigned to the variable if its corresponding box is checked, or
button is selected.    Following the number is the descriptive text which will
appear next to the box or button.
When used in conjunction with a file selection list box variable with the same
name, two of these symbols have special meanings:

file mask edit box [editfile#]
$ directory variable [editfile$]

 See the EXAMPLE

Anything not appearing within square brackets is displayed as text.
See the separate section on Dialog Boxes later in this manual for more
detailed information on using this function.
Example:
DialogBox("Edit a file", "edit.wbd")
If backup == 0 Then Goto nobackup
filebackupname = StrCat(FileRoot(editfile), ".", "bak")
FileCopy(editfile, filebackupname, @TRUE)

:nobackup
If prog == 1 Then Run("notepad.exe", editfile)
If prog == 2 Then Run("c:\win\apps\winedit.exe", editfile)

Here is the template file, EDIT.WBD:
[editfile$             ]
          File mask [editfile#       ]
[editfile\ ]
[editfile\ ]
[editfile\ ]
[editfile\ ]
[editfile\ ]
[backup+1Save backup of file]
[prog^1Notepad]          [prog^2WinEdit]

See Also:
AskLine, AskPassword, AskYesNo, ItemSelect

Statements

Assignment Statements

Assignment statements are used to set variables to specific or computed
values.    Variables may be set to integers or strings.

Examples:

a = 5
value = Average(a, 10, 15)
location = "Northern Hemisphere"
world = StrCat(location, " ", "Southern Hemisphere")

Control Statements

Control statements are generally used to execute system management
functions and consist of a call to a command without assigning any return
values.
Examples:

Exit
Yield

Substitution

The batch language has a powerful substitution feature which inserts the
contents of a string variable into a statement before the line is parsed.
To substitute the contents of a variable in the statement, simply put a
percent-sign (%) on both sides of the variable name.

Examples:
mycmd = "DirChange('c:\')" ;set mycmd to a command
%mycmd% ;execute the command

Or consider this one:

IniWrite("PC", "User", "Richard")
...
name = IniRead("PC", "User", "somebody")
Message("", "Thank you, %name%")

To put a single percent-sign (%) on a source line, specify a double percent
sign(%%).    This is required even inside quoted strings.

Note:    The length of a line, after any substitution occurs, may not exceed
255 characters.

Variables

A variable may contain an integer, a string, or a string representing an
integer.    Automatic conversions between integers and strings are performed
as a matter of course during execution.

If a function requires a string parameter and an integer parameter is
supplied, the variable will be automatically modified to include the
representative string.
If a function requires an integer parameter and a string parameter is
supplied, an attempt will be made to convert the string to an integer.    If it
does not convert successfully, an error will result.

Precedence and evaluation order

The precedence of the operators affect the evaluation of operands in
expressions.    Operands associated with higher-precedence operators are
evaluated before the lower-precedence operators.

The table below shows the precedence of the operators.    Where operators
have the same precedence, they are evaluated from left to right.

Operator Description
() Parenthetical grouping
~ ! - + Unary operators
* / mod Multiplication & Division
+ - Addition & Subtraction
<<    >> Shift operators
< <= == >= > != <> Relational operators
& ^ | Bit manipulation operators
&& | |Logical operators

List of Commands

Outline of Commands and Procedures
WIL Language Guide

Introduction to the WIL Language

WINDOWS AT YOUR COMMAND

The WIL Interface Language for Windows gives you control over Windows and the
applications running under it. WIL scripts can open, arrange, control, and close any Windows
application. WIL scripts can control networking functions. They smooth the operation of
networks by controlling resources, configuring workstations, and performing network
diagnostics. Any Windows operations can be automated with WIL scripts. Where macro
languages stop at handling one application, WIL works within and between all Windows
applications.

The WIL language is included in many Windows applications. All versions feature the same
commands; but, they differ in how they are implemented. Access variations include program
menu items, hot keys, the Windows control menu, or small standalone batch programs.

WIL command scripts are contained in simple text files you create with the Windows
Notepad text editor. The scripts are made up of statements, constants, and variables--much
like any programming language. The WIL Language Guide contains more information on
constructing WIL scripts. You can quickly go to it by clicking with your mouse on its
hypertext topic at the top of this page. If you don't use the mouse, you can use the tab key
to highlight the WIL Language Guide item, and then press the enter key.

The WIL language gives you more than a hundred sixty functions and commands. Many new
commands are useful in administering networks, exchanging data among Windows
applications, and in customizing the
Windows environment.

This help application is divided into three main areas: List of Commands, Outline of
Command and Procedures, and a WIL Language Guide. Extended help is provided for the
advanced macro programmer in the area of dialog box construction.

You will find Commands and help sections cross referenced by hot words. These hot words
are underlined and displayed in a contrasting color. You can access the hypertext topics
either by double clicking on them with the mouse, or by using the tab and enter keys as
described above. The standard Windows Help hypertext color, green, can be changed to
enhance legibility. To do so, add these lines to the [Windows Help] section of your WIN.INI file
(other statements may be already present in this section. Keep them
there.):

[Windows Help]
JumpColor=0 0 255
PopupColor=255 0 0

The numbers specify colors in RGB format. You can see the relationship between the colors
and the numbers by exploring the Options Edit Colors area of the Paintbrush application that
came with your copy of Windows.

You will want to use this WIL Help application while you are writing scripts. The indexes and
hypertext references will be useful, but there are more features you can use to advantage.

The Edit Copy menu item lets you copy the sample code into your scripts. Most of the
commands also have their examples listed in plain text for ease in copying.

Windows Help has additional features you can use to advantage. The WIL Language Help
annotation feature lets you create your own comments on any page in WIL Help.
Annotations are indicated at the upper left of any page with a paper clip icon. These
annotations are useful in administering networks. The network administrators or support
staff can write and distribute annotations that customize the help files for specific networks.
The annotations are held in a wilhelp.ann file in the Windows directory.

Finally, another feature lets you can add    bookmark menu items to WIL Help. With these,
you can quickly return to items you find you need often.    Use this feature to create a quick
access menu system.

In the WIL language, we use a shorthand notation to indicate the syntax of the functions.

Optional parameters are enclosed in square brackets "[]".    When a function takes a variable
number of parameters, the variable parts will be followed by ellipses ("...").

Take, for example, string concatenation:

StrCat ("string"[, "string"]...)

This says that the StrCat function takes at least one string parameter.    Optionally, you can
specify more strings to concatenate.    If you do, you must separate the strings with commas.

For each function and command, we show you the Syntax, describe the Parameters (if any),
the value it Returns (if any), a description of the function, Example code, and related
functions. You may want to
explore the "See Also" commands. This is particularly handy in this WIL Language Help
application, since most of these are hypertext topics.

For more information see the WIL Language Guide.

